Description:
1. M. Ausloos. Measuring complexity with multifractals in texts. Translation effects //M. Ausloos. — Chaos, Solitons & Fractals, 2012, Pages 1349-1357.
2. Turing, A. M. "On Computable Numbers, with an Application to the Entscheidungsproblem." // Proceedings of the London Mathematical Society (1936). — 42(1). — p. 230-265.
3. Davis, M. "The Universal Computer: The Road from Leibniz to Turing." // W. W. Norton & Company (2000).
4. Garey, M. R., & Johnson, D. S"Computers and Intractability: A Guide to the Theory of NP-Completeness."// W. H. Freeman & Co. (1979).
5. Arora, S., & Barak, B. "Computational Complexity: A Modern Approach." // Cambridge University Press (2009).
6. Introduction to Algorithms : Third Edition : [пер. з англ.] / Томас Г. Кормен, Чарлз Е. Лейзерсон, Роналд Л. Рівест, Кліфорд Стайн, —К. : К. I. С., 2019. — p. 1056-1087.
7. Соловйов В. М. Аналіз когнітивних траєкторій методами теорії складних мереж// В. М. Соловйов, В. М. Пірогов, О. О.Ярмольська. — КДПУ: Комп’ютерне моделювання в освіті, 2018. — 25-29 с.
8. Соловйов В. М. Моделювання складних систем / В. М. Соловйов, О. А. Сердюк, Г. Б. Данильчук. – Черкаси : Видавець Вовчок О. Ю., 2016. – 204 с.
9. Kurt G. On formally undecidable propositions of Principia Mathematica and related systems I in Solomon Feferman// Kurt Gödel, 1986. — Kurt Gödel Collected works, Vol. I. Oxford University Press: 144—195.
10. Alonzo C. An unsolvable problem of elementary number theory // Alonzo Church, American Journal of Mathematics. — 1936. — Vol. 58. — P. 345—363. — doi:10.2307/2371045.
11. Hartmanis, J., Stearns R. E. "On the Computational Complexity of Algorithms." Communications of the ACM, 8(10), 1965. – p. 555-563.
12. S. A. Cook "The Complexity of Theorem-Proving Procedures." Proceedings of the Third Annual ACM Symposium on Theory of Computing (STOC '71), 1971. – p. 151-158.
13. Karp, R. M. "Reducibility Among Combinatorial Problems." Complexity of Computer Computations, 1972. – р. 85-103.
14. Boccaletti S. Complex networks: structure and dynamics / S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwanga // Physics Reports. – 2006. – Vol. 424. – Iss. 4-5. – P. 175-308.
15. Sipser, M. (2006). "Introduction to the Theory of Computation." Cengage Learning.
16. Bianconi G. Interdisciplinary and physics challenges in network theory / Ginestra Bianconi // Europhysics Letters. – 2015. – Vol. 111. – Num. 5. – P. 56001-p1–56001-p7.
17. Arora, S., & Barak, B. (2009). "Computational Complexity: A Modern Approach." Cambridge University Press.
18. Introduction to Algorithms : Third Edition : [пер. з англ.] / Томас Г. Кормен, Чарлз Е. Лейзерсон, Роналд Л. Рівест, Кліфорд Стайн, —К. : К. I. С., 2019. — С. 1056-1087.
19. Jacob, R. J. K., & Girouard, A. (2012). "Inclusive Information and Communication Technologies for People with Disabilities." IGI Global.
20. Соловйов В. М. Мережні міри складності соціально-економічних систем / В. М. Соловйов // Вісник Черкаського університету. Серія Прикладна математика. Інформатика. – 2015. – № 38 (371). – С. 67-79.
21. Amancio D. R. On the concepts of complex networks to quantify the difficulty in finding the way out of labyrinths / D. R. Amancio, O. N. Oliveira Jr., L. da F. Costa. – Physica A: Statistical Mechanics and its Applications. – 2011. – Vol. 390. – Iss. 23-24. – P. 4673-4683.
22. Grabska-Gradzińska I. Complex network analysis of literary and scientific texts/ I. Grabska-Gradzińska, A. Kulig, J. Kwapień, S. Drozdz. – International Journal of Modern Physics CVol. 23, No. 7 (2012) 1250051 (15 pages).
23. Grabska-Gradzińska I. Multifractal analysis of sentence lengths in English literary texts / I. Grabska-Gradzińska, A. Kulig, J. Kwapień, P. Oświęcimka, S. Drozdz. – International Journal of Modern Physics (2012).
24. Soloviev V. Complexity Theory and Dynamic Characteristics of Cognitive Processes/ Vladimir Soloviev, Natalia Moiseienko, Olena Tarasova. – ICTERI 2019: Information and Communication Technologies in Education, Research, and Industrial Applications pp 231–253.
25. Lyda R. “Using Entropy Analysis to Find Encrypted and Packed Malware” / Robert Lyda, James Hamrock – IEEE, 2007.
26. Christianson N. H. Architecture and evolution of semantic networks in mathematics texts / Christianson, Nicolas H.; Sizemore Blevins, Ann; Bassett, Danielle S. (2020) Proc. R. Soc. A 476: 20190741. http://dx.doi.org/10.1098/rspa.2019.0741.
27. Ajayakumar V. Parsing text with Python [Електронний ресурс] / Vipin Ajayakumar// Сайт vipinajayakumar - Режим доступу: https://www.vipinajayakumar.com // (дата звернення: 19.06.2023).
28. Rutten, N., Van Joolingen, R., Van der Veen, J.T.: The learning effects of computer simulations in science education. Comput. Educ. 58(1), 136–153 (2012).
29. Lamb, R., Premo, J.: Computational modeling of teaching and learning through application of evolutionary algorithms. Computation 3, 427–443 (2015).
30. Mayor, J., Gomez, P.: Computational Models of Cognitive Processes: Proceedings of the 13th Neural Computation and Psychology Workshop (NCPW13). World Scientific Publishing Co., Singapore (2014).
31. Nikolis, G., Prigogine, I.: Exploring Complexity: An Introduction. W. H. Freeman and Company, New York (1989).
32. Arnold, V.I.: Matematika i matematicheskoe obrazovanie v sovremennom mire (Math and math education in the modern world). Matematicheskoe obrazovanie 2, 109–112 (1997).
33. Harasim, L.: Shift happens: online education as a new paradigm in learning. Internet High. Educ. 3(1–2), 41–61 (2000).
34. Goh, W.P., Kwek, D., Hogan, D., Cheong, S.A.: Complex network analysis of teaching. EPJ Data Sci. (2014). https://doi.org/10.1140/epjds/s13688-014-0034-9.
35. Soloviev, V.M., Serdyuk, O.A., Danilchuk, G.B.: Modelyuvannya skladnih system (Complex systems modeling). Publisher Vovchok O.Yu, Cherkasy (2016).
36. Hausdorff, J., Zemany, L., Peng, C.-K., Goldberger, A.L.: Maturation of gait dynamics: stride-to-stride variability and its temporal organization in children. J. Appl. Physiol. 86(3), 1040–1047 (1999).
37. Delignieres, D., Torrex, K.: Fractal dynamics of human gait: a reassessment of the 1996 data of Hausdorff et al. J. Appl. Physiol. 106, 1272–1279 (2009).
38. Van Rooij, M.M.J.W., Nash, B.A., Rajaraman, S., Holden, J.G.: A fractal approach to dynamic inference and distribution analysis. Front. Physiol. 4(1), 1–16 (2013).
39. Ausloos, M.: Generalized Hurst exponent and multifractal function of original and translated texts mapped into frequency and length time series. Phys. Rev. E 86(3), 031108 (2012).
40. Liu, X.F., Tse, C.K., Small, M.: Complex network structure of musical compositions: algorithmic generation of appealing music. Physica A 389, 126–132 (2010).
41. Meyer A., Rose D. H. "Universal Design for Learning: Theory and Practice", Anne Meyer та David H. Rose, 2014.
42. Schmid, U., Ragni, M., Gonzalez, C., Funke, J.: The challenge of complexity for cognitive systems. Cogn. Syst. Res. 12, 211–218 (2011).
43. Bentz, C., Alikaniotis, D., Cysouw, M., Ferrer-i-Cancho, R.: The entropy of words-learnability and expressivity across more than 1000 languages. Entropy 19(6), 275–279 (2017).
44. Keshmiri, S., Sumioka, H., Yamazaki, R., Ishiguro, H.: Multiscale entropy quantifies the differential effect of the medium embodiment on older adults prefrontal cortex during the story comprehension: a comparative analysis. Entropy 21, 199–215 (2019).
45. Hernandez-Gomez, C., Basurdo-Flores, R., Obregon-Quintana, B., Guzman-Vargas, L.: Evaluating the irregularity of natural languages. Entropy 19, 521–621 (2017).
46. Wu, M., Liao, L., Luo, X., et al.: Children development using gait signal dynamics parameters and ensemble learning algorithms. BioMed. Res. Int. 2016, 8 pages (2016). https://doi.org/10.1155/2016/9246280.
47. Wijnants, M.L: A review of theoretical perspectives in cognitive science on the presence of 1/f scaling in coordinated physiological and cognitive processes. J. Nonlinear Dyn. 2014, 17 pages (2014). https://doi.org/10.1155/2014/962043.
48. Soloviev, V., Belinskij, A.: Methods of nonlinear dynamics and the construction of cryptocurrency crisis phenomena precursors. In: Ermolayev, V., et al. (eds.) Proceedings of the 14th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer. Volume II: Workshops, Kyiv, Ukraine, 14–17 May 2018. CEUR Workshop Proceedings, vol. 2014, pp. 116–127.
49. Soloviev, V.N., Belinskiy, A.: Complex systems theory and crashes of cryptocurrency market. In: Ermolayev, V., Suárez-Figueroa, M.C., Yakovyna, V., Mayr, H.C., Nikitchenko, M., Spivakovsky, A. (eds.) ICTERI 2018. CCIS, vol. 1007, pp. 276–297. Springer, Cham (2019).
50. Soloviev, V., Belinskij, A., Solovieva, V.: Entropy analysis of crisis phenomena for DJIA index. In: Ermolayev, V., et al. (eds.) Proceedings of the 15th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer. Volume II: Workshops, Kherson, Ukraine, 12–15 June 2019. CEUR Workshop Proceedings, vol. 2393, pp. 434–449. http://ceur-ws.org/Vol-2393/paper_375.pdf.
51. Soloviev, V., Moiseienko, N., Tarasova, O.: Modeling of cognitive process using complexity theory methods. In: Ermolayev, V., et al. (eds.) Proceedings of the 15th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer. Volume II: Workshops, Kherson, Ukraine, 12–15 June 2019. CEUR Workshop Proceedings, vol. 2393, pp. 905–918. http://ceur-ws.org/Vol-2393/paper_356.pdf.
52. McClendon, M.S.: The complexity and difficulty of a maze. In: Sarhangi R., Jablan S. (eds.) Proceedings of Bridges 2001. Mathematical connections in art, music, and science, pp. 213–220. Southwestern College Winfield, Kansas (2001).
53. Kiv, A.E., Orischenko, V.G., Tavalika, L.D., Holmes, S.: Computer testing of operator’s creative thinking. Comput. Model. New Technol. 4(2), 107–109 (2000).
54. Kiv, A.E., Orischenko, V.G., Polozovskaya, I.A., Zakharchenko, I.G.: Computer modelling of the learning organization. In: Kidd, P.T., Karwowski, W. (eds.) Advances in Agil Manufacturing, 553–556. IOS Press, Amsterdam (1994).
55. Martincic-Ipsic, S., Margan, D., Mestrovic, A.: Multilayer networks of language: a unified framework for structural analysis of linguistic subsystems. Physica A 457, 117–128 (2016).
56. Boccaletti, S., Bianconi, G., Criado, R., et al.: The structure and dynamics of multilayer networks. Phys. Rep. 544(1), 1–122 (2014).
57. Network Analysis in Python [Електронний ресурс] Сайт NetworkX. - Режим доступу: // https://networkx.org/documentation/stable/index.html (дата звернення: 20.09.2023).