Description:
[1] V. Ermolayev, F. Mallet, V. Yakovyna, V. Kharchenko, V. Kobets, A. Kornilowicz, H. Kravtsov, M. Nikitchenko, S. Semerikov, A. Spivakovsky, Preface, CEUR Workshop Proceedings 2393 (2019). URL: https://ceur-ws.org/Vol-2393/preface.pdf.
[2] O. Sokolov, G. Zholtkevych, V. Yakovyna, Y. Tarasich, V. Kharchenko, V. Kobets, O. Burov, S. Semerikov, H. Kravtsov, Preface, CEUR Workshop Proceedings 2732 (2020). URL: http://ceur-ws.org/Vol-2732/preface.pdf.
[3] A. E. Kiv, S. O. Semerikov, V. N. Soloviev, A. M. Striuk, 9th Illia O. Teplytskyi Workshop on Computer Simulation in Education, in: V. Ermolayev, A. E. Kiv, S. O. Semerikov, V. N. Soloviev, A. M. Striuk (Eds.), Proceedings of the 9th Illia O. Teplytskyi Workshop on Computer Simulation in Education (CoSinE 2021) co-located with 17th International Conference on ICT in Education, Research, and Industrial Applications: Integration, Harmonization, and Knowledge Transfer (ICTERI 2021), Kherson, Ukraine, October 1, 2021, volume 3083 of CEUR Workshop Proceedings, CEUR-WS.org, 2021, pp. i–xx. URL: https://ceur-ws.org/Vol-3083/paper000.pdf.
[4] S. Papadakis, A. E. Kiv, H. M. Kravtsov, V. V. Osadchyi, M. V. Marienko, O. P. Pinchuk, M. P. Shyshkina, O. M. Sokolyuk, I. S. Mintii, T. A. Vakaliuk, A. M. Striuk, S. O. Semerikov, Revolutionizing education: using computer simulation and cloud-based smart technology to facilitate successful open learning, CEUR Workshop Proceedings (2023) 1–18.
[5] N. P. Kozachenko, Modelling of AGM-style doxastic operations in three-valued setting, CEUR Workshop Proceedings (2023) 19–38.
[6] R. P. Kukharchuk, T. A. Vakaliuk, O. V. Zaika, A. V. Riabko, M. G. Medvediev, Implementation of STEM learning technology in the process of calibrating an NTC thermistor and developing an electronic thermometer based on it, CEUR Workshop Proceedings (2023) 39–52.
[7] K. Bondar, O. Shestopalova, V. Hamaniuk, V. Tursky, Ukraine higher education based on data-driven decision making (DDDM), CEUR Workshop Proceedings (2023) 53–72.
[8] O. Pronina, O. Piatykop, The recognition of speech defects using convolutional neural network, CEUR Workshop Proceedings (2023) 73–86.
[9] O. V. Klochko, V. M. Fedorets, M. V. Mazur, Y. P. Liulko, An IoT system based on open APIs and geolocation for human health data analysis, CEUR Workshop Proceedings (2023) 87–101.
[10] M. Baaden, Deep inside molecules - digital twins at the nanoscale, Virtual Real. Intell. Hardw. 4 (2022) 324–341. doi: 10.1016/j.vrih.2022.03.001 .
[11] A. Martinez-Seras, J. D. Ser, P. G. Bringas, Can Post-hoc Explanations Effectively Detect Out-of-Distribution Samples?, in: IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2022, Padua, Italy, July 18-23, 2022, IEEE, 2022, pp. 1–9. doi: 10.1109/FUZZ-IEEE55066.2022.9882726 .
[12] O. Y. Burov, A. E. Kiv, S. O. Semerikov, A. M. Striuk, M. I. Striuk, L. S. Kolgatina, I. V. Oliinyk, AREdu 2020 - How augmented reality helps during the coronavirus pandemic, in: O. Y. Burov, A. E. Kiv (Eds.), Proceedings of the 3rd International Workshop on Augmented Reality in Education, Kryvyi Rih, Ukraine, May 13, 2020, volume 2731 of CEUR Workshop Proceedings, CEUR-WS.org, 2020, pp. 1–46. URL: https://ceur-ws.org/Vol-2731/paper00.pdf.
[13] W. M. Tessema, N. Cavus, Design and Evaluate the Efficiency of Ethiopic Local Integrating System in Open-Source Database, IEEE Access 10 (2022) 116819–116829. doi: 10.1109/ACCESS.2022.3218418 .
[14] M. B. M. Mansour, T. Abdelkader, M. Hashem, E. M. El-Horbaty, An integrated three-tier trust management framework in mobile edge computing using fuzzy logic, PeerJ Comput. Sci. 7 (2021) e700. doi: 10.7717/peerj- cs.700 .
[15] D. J. L. Cuesta, R. Fabregat, Educational Robotics Intervention in the Motivation of Students, Rev. Iberoam. de Tecnol. del Aprendiz. 17 (2022) 131–139. doi: 10.1109/RITA.2022.3166856 .
[16] I. Georgescu, Inventory problems with fuzzy numbers as demands, Soft Comput. 26 (2022) 3947–3955. doi: 10.1007/s00500-022-06758-w .
[17] W. Khan, M. A. Ghazanfar, M. A. Azam, A. Karami, K. H. Alyoubi, A. S. Alfakeeh, Stock market prediction using machine learning classifiers and social media, news, J. Ambient Intell. Humaniz. Comput. 13 (2022) 3433–3456. doi: 10.1007/s12652-020-01839-w .
[18] D. Bajaj, A. Goel, S. C. Gupta, GreenMicro: Identifying Microservices From Use Cases in Greenfield Development, IEEE Access 10 (2022) 67008–67018. doi: 10.1109/ACCESS.2022.3182495 .
[19] C. S. González-González, V. Muñoz-Cruz, P. A. T. Delgado, E. Nacimiento-García, Personalized Gamification for Learning: A Reactive Chatbot Architecture Proposal, Sensors 23 (2023) 545. doi: 10.3390/s23010545 .
[20] C. Wang, H. Ma, G. Chen, S. Hartmann, Memetic EDA-Based Approaches to QoS-Aware Fully Automated Semantic Web Service Composition, IEEE Trans. Evol. Comput. 26 (2022) 570–584. doi: 10.1109/TEVC.2021.3127633 .
[21] K. Kanaki, M. Kalogiannakis, Algorithmic thinking in early childhood, in: Proceedings of the 6th International Conference on Digital Technology in Education, ICDTE 2022, Hangzhou, China, September 16-18, 2022, ACM, 2022, pp. 66–71. doi: 10.1145/3568739.3568752 .
[22] Y. P. Kondratenko, I. P. Atamanyuk, I. V. Sidenko, G. V. Kondratenko, S. Sichevskyi, Machine learning techniques for increasing efficiency of the robot’s sensor and control information processing, Sensors 22 (2022) 1062. doi: 10.3390/s22031062 .
[23] A. A. Enughwure, F. Lelli, On Developing Human Centric Digital Twins in Industry 4.0 and Beyond, in: M. Zelm, A. Boza, R. D. León, R. Rodríguez-Rodríguez (Eds.), Proceedings of Interoperability for Enterprise Systems and Applications Workshops co-located with 11th International Conference on Interoperability for Enterprise Systems and Applications (I-ESA 2022), Valencia, Spain, March 23-25, 2022, volume 3214 of CEUR Workshop Proceedings, CEUR-WS.org, 2022. URL: https://ceur-ws.org/Vol-3214/WS5Paper11.pdf.
[24] V. Chang, M. Ramachandran, C. Li, Special issue editorial on emerging trends in internet of things for e-health and medical supply chain systems, Expert Syst. J. Knowl. Eng. 39 (2022). doi: 10.1111/exsy.12870 .
[25] B. Morawska, P. Lipinski, K. Lichy, K. Adamkiewicz, Transfer learning-based UWB indoor localization using MHT-MDC and clusterization-based sparse fingerprinting, J. Comput. Sci. 61 (2022) 101654. doi: 10.1016/j.jocs.2022.101654 .
[26] S. Lin, J. Liu, E. F. Y. Young, M. D. F. Wong, GAMER: GPU-Accelerated Maze Routing, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 42 (2023) 583–593. doi: 10.1109/TCAD.2022.3184281 .
[27] L. Nanni, A. Manfe, G. Maguolo, A. Lumini, S. Brahnam, High performing ensemble of convolutional neural networks for insect pest image detection, Ecol. Informatics 67 (2022) 101515. doi: 10.1016/j.ecoinf.2021.101515 .
[28] R. Mehmood, M. Riaz, M. H. Lee, I. Ali, M. Gharib, Exact computational methods for univariate and multivariate control charts under runs rules, Comput. Ind. Eng. 163 (2022) 107821. doi: 10.1016/j.cie.2021.107821 .
[29] V. Moscato, G. Sperlì, Community detection over feature-rich information networks: An eHealth case study, Inf. Syst. 109 (2022) 102092. doi: 10.1016/j.is.2022.102092 .
[30] C. Braun, F. Kayali, T. Moser, Erstellung und Einsatz von 360-Grad-Medien in der Lehre - leicht gemacht, in: P. A. Henning, M. Striewe, M. Wölfel (Eds.), DELFI 2022, Die 20. Fachtagung Bildungstechnologien der Gesellschaft für Informatik e.V., 12.-14. September 2022, Karlsruhe, volume P-322 of LNI, Gesellschaft für Informatik e.V., 2022, pp. 129–134. doi: 10.18420/delfi2022- 024 .
[31] R. K. Naha, S. K. Garg, S. K. Battula, M. B. Amin, D. Georgakopoulos, Multiple linear regression-based energy-aware resource allocation in the Fog computing environment, Comput. Networks 216 (2022) 109240. doi: 10.1016/j.comnet.2022.109240 .
[32] K. Lavidas, A. Petropoulou, S. Papadakis, Z. Apostolou, V. Komis, A. Jimoyiannis, V. Gialamas, Factors Affecting Response Rates of the Web Survey with Teachers, Comput. 11 (2022) 127. doi: 10.3390/computers11090127 .
[33] M. Kurz, P. Offenhäuser, D. Viola, O. Shcherbakov, M. M. Resch, A. Beck, Deep reinforcement learning for computational fluid dynamics on HPC systems, J. Comput. Sci. 65 (2022) 101884. doi: 10.1016/j.jocs.2022.101884 .
[34] N. P. Volkova, N. O. Rizun, M. V. Nehrey, Data science: opportunities to transform education, CTE Workshop Proceedings 6 (2019) 48–73. doi: 10.55056/cte.368 .
[35] V. O. Babenko, R. M. Yatsenko, P. D. Migunov, A.-B. M. Salem, MarkHub Cloud Online Editor as a modern web-based book creation tool, CTE Workshop Proceedings 7 (2020) 174–184. doi: 10.55056/cte.342 .
[36] Z. K. Papamitsiou, M. E. Filippakis, M. Poulou, D. G. Sampson, D. Ifenthaler, M. N. Giannakos, Towards an educational data literacy framework: enhancing the profiles of instructional designers and e-tutors of online and blended courses with new competences, Smart Learn. Environ. 8 (2021) 18. doi: 10.1186/s40561- 021- 00163- w .
[37] A. S. Cabezuelo, Prediction of Rainfall in Australia Using Machine Learning, Inf. 13 (2022) 163. doi: 10.3390/info13040163 .
[38] P. K. Singh, Uncertainty analysis in document publications using single-valued neutrosophic set and collaborative entropy, Artif. Intell. Rev. 56 (2023) 2785–2809. doi: 10.1007/s10462-022-10249-7 .
[39] N. Magnenat-Thalmann, J. Kim, G. Papagiannakis, D. Thalmann, B. Sheng, Computer graphics for metaverse, Virtual Real. Intell. Hardw. 4 (2022) ii–iv. doi: 10.1016/j.vrih.2022.10.001 .
[40] T. Chan, C. Looi, B. Chang, W. Chen, L. Wong, S. L. Wong, F. Yu, J. Mason, C. Liu, J. Shih, Y. Wu, S. Kong, L. Wu, T. Chien, C. C. Y. Liao, H. N. H. Cheng, Z. Chen, C. Chou, IDC theory: creation and the creation loop, Res. Pract. Technol. Enhanc. Learn. 14 (2019) 26. doi: 10.1186/s41039- 019- 0120- 5 .
[41] N. Jofche, K. Mishev, R. Stojanov, M. Jovanovik, E. Zdravevski, D. Trajanov, PharmKE: Knowledge Extraction Platform for Pharmaceutical Texts Using Transfer Learning, Comput. 12 (2023) 17. doi: 10.3390/computers12010017 .
[42] V. Kukharenko, B. Shunevych, H. Kravtsov, Distance course examination, Educational Technology Quarterly 2022 (2022) 1–19. doi: 10.55056/etq.4 .
[43] M. Popel, S. V. Shokalyuk, M. Shyshkina, The Learning Technique of the SageMathCloud Use for Students Collaboration Support, in: V. Ermolayev, N. Bassiliades, H. Fill, V. Yakovyna, H. C. Mayr, V. S. Kharchenko, V. S. Peschanenko, M. Shyshkina, M. S. Nikitchenko, A. Spivakovsky (Eds.), Proceedings of the 13th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer, ICTERI 2017, Kyiv, Ukraine, May 15-18, 2017, volume 1844 of CEUR Workshop Proceedings, CEUR-WS.org, 2017, pp. 327–339. URL: https://ceur-ws.org/Vol-1844/10000327.pdf.
[44] I. S. Mintii, V. N. Soloviev, Augmented Reality: Ukrainian Present Business and Future Education, in: A. E. Kiv, V. N. Soloviev (Eds.), Proceedings of the 1st International Workshop on Augmented Reality in Education, Kryvyi Rih, Ukraine, October 2, 2018, volume 2257 of CEUR Workshop Proceedings, CEUR-WS.org, 2018, pp. 227–231. URL: https://ceur-ws.org/Vol-2257/paper22.pdf.
[45] D. S. Shepiliev, S. O. Semerikov, Y. V. Yechkalo, V. V. Tkachuk, O. M. Markova, Y. O. Modlo, I. S. Mintii, M. M. Mintii, T. V. Selivanova, N. K. Maksyshko, T. A. Vakaliuk, V. V. Osadchyi, R. O. Tarasenko, S. M. Amelina, A. E. Kiv, Development of career guidance quests using WebAR, Journal of Physics: Conference Series 1840 (2021) 012028. doi: 10.1088/1742- 6596/1840/1/012028 .
[46] O. Y. Burov, O. P. Pinchuk, A meta-analysis of the most influential factors of the virtual reality in education for the health and efficiency of students’ activity, Educational Technology Quarterly 2023 (2023). doi: 10.55056/etq.435 .
[47] Y. O. Modlo, S. O. Semerikov, S. L. Bondarevskyi, S. T. Tolmachev, O. M. Markova, P. P. Nechypurenko, Methods of using mobile Internet devices in the formation of the general scientific component of bachelor in electromechanics competency in modeling of technical objects, in: A. E. Kiv, M. P. Shyshkina (Eds.), Proceedings of the 2nd International Workshop on Augmented Reality in Education, Kryvyi Rih, Ukraine, March 22, 2019, volume 2547 of CEUR Workshop Proceedings, CEUR-WS.org, 2019, pp. 217–240. URL: https://ceur-ws.org/Vol-2547/paper16.pdf.
[48] N. V. Rashevska, S. O. Semerikov, N. O. Zinonos, V. V. Tkachuk, M. P. Shyshkina, Using augmented reality tools in the teaching of two-dimensional plane geometry, in: O. Y. Burov, A. E. Kiv (Eds.), Proceedings of the 3rd International Workshop on Augmented Reality in Education, Kryvyi Rih, Ukraine, May 13, 2020, volume 2731 of CEUR Workshop Proceedings, CEUR-WS.org, 2020, pp. 79–90. URL: https://ceur-ws.org/Vol-2731/paper03.pdf.
[49] O. P. Pinchuk, O. M. Sokolyuk, O. Y. Burov, M. P. Shyshkina, Digital transformation of learning environment: aspect of cognitive activity of students, CTE Workshop Proceedings 6 (2019) 90–101. doi: 10.55056/cte.370 .
[50] A. E. Kiv, M. P. Shyshkina, S. O. Semerikov, A. M. Striuk, Y. V. Yechkalo, AREdu 2019 - How augmented reality transforms to augmented learning, in: A. E. Kiv, M. P. Shyshkina (Eds.), Proceedings of the 2nd International Workshop on Augmented Reality in Education, Kryvyi Rih, Ukraine, March 22, 2019, volume 2547 of CEUR Workshop Proceedings, CEUR-WS.org, 2019, pp. 1–12. URL: https://ceur-ws.org/Vol-2547/paper00.pdf.
[51] T. A. Vakaliuk, V. V. Kontsedailo, D. S. Antoniuk, O. V. Korotun, I. S. Mintii, A. V. Pikilnyak, Using game simulator Software Inc in the Software Engineering education, in: A. E. Kiv, M. P. Shyshkina (Eds.), Proceedings of the 2nd International Workshop on Augmented Reality in Education, Kryvyi Rih, Ukraine, March 22, 2019, volume 2547 of CEUR Workshop Proceedings, CEUR-WS.org, 2019, pp. 66–80. URL: https://ceur-ws.org/Vol-2547/paper05.pdf.
[52] S. Papadakis, The Impact of Coding Apps to Support Young Children in Computational Thinking and Computational Fluency. A Literature Review, Frontiers in Education 6 (2021) 657895. doi: 10.3389/feduc.2021.657895 .
[53] S. Papadakis, Advances in Mobile Learning Educational Research (A.M.L.E.R.): Mobile learning as an educational reform, Advances in Mobile Learning Educational Research 1 (2021) 1–4. doi: 10.25082/AMLER.2021.01.001 .
[54] S. Papadakis, In-service teachers’ beliefs about educational robotics in preschool classroom, International Journal of Technology Enhanced Learning 14 (2022) 125–141. doi: 10.1504/IJTEL.2022.121770 .
[55] S. Papadakis, Can Preschoolers Learn Computational Thinking and Coding Skills with ScratchJr? A Systematic Literature Review, International Journal of Educational Reform (2022) 10567879221076077. doi: 10.1177/10567879221076077 .
[56] S. Papadakis, Apps to Promote Computational Thinking and Coding Skills to Young Age Children: A Pedagogical Challenge for the 21st Century Learners, Educational Process: International Journal (EDUPIJ) 11 (2022) 7–13. doi: 10.22521/edupij.2022.111.1 .
[57] S. Papadakis, F. Alexandraki, N. Zaranis, Mobile device use among preschool-aged children in Greece, Education and Information Technologies 27 (2022) 2717–2750. doi: 10.1007/s10639-021-10718-6 .
[58] S. Papadakis, M. Kalogianakis, E. Sifaki, A. Monnier, Editorial: The Impact of Smart Screen Technologies and Accompanied Apps on Young Children Learning and Developmental Outcomes, Frontiers in Education 6 (2021) 790534. doi: 10.3389/feduc.2021.790534 .
[59] M. Ampartzaki, M. Kalogiannakis, S. Papadakis, Deepening Our Knowledge about Sustainability Education in the Early Years: Lessons from a Water Project, Education Sciences 11 (2021) 251. doi: 10.3390/educsci11060251 .
[60] J. Vaiopoulou, S. Papadakis, E. Sifaki, D. Stamovlasis, M. Kalogiannakis, Parents’ Perceptions of Educational Apps Use for Kindergarten Children: Development and Validation of a New Instrument (PEAU-p) and Exploration of Parents’ Profiles, Behavioral Sciences 11 (2021) 82. doi: 10.3390/bs11060082 .
[61] P. Dorouka, S. Papadakis, M. Kalogiannakis, The Contribution of the Health Crisis to Young Children’s Nano-literacy through STEAM Education, Hellenic Journal of STEM Education 2 (2021) 1–7. doi: 10.51724/hjstemed.v2i1.18 .
[62] T. Karakose, R. Yirci, S. Papadakis, Examining the Associations between COVID-19-Related Psychological Distress, Social Media Addiction, COVID-19-Related Burnout, and Depression among School Principals and Teachers through Structural Equation Modeling, International Journal of Environmental Research and Public Health 19 (2022) 1951. doi: 10.3390/ijerph19041951 .
[63] A.-I. Zourmpakis, S. Papadakis, M. Kalogiannakis, Education of preschool and elementary teachers on the use of adaptive gamification in science education, International Journal of Technology Enhanced Learning 14 (2022) 1–16. doi: 10.1504/IJTEL.2022.120556 .
[64] M. Drolia, S. Papadakis, E. Sifaki, M. Kalogiannakis, Mobile Learning Applications for Refugees: A Systematic Literature Review, Education Sciences 12 (2022) 96. doi: 10.3390/educsci12020096 .
[65] A. Chatzopoulos, M. Kalogiannakis, S. Papadakis, M. Papoutsidakis, A Novel, Modular Robot for Educational Robotics Developed Using Action Research Evaluated on Technology Acceptance Model, Education Sciences 12 (2022) 274. doi: 10.3390/educsci12040274 .
[66] K. Lavidas, Z. Apostolou, S. Papadakis, Challenges and Opportunities of Mathematics in Digital Times: Preschool Teachers’ Views, Education Sciences 12 (2022) 459. doi: 10.3390/educsci12070459 .
[67] N. Kozachenko, Dynamic doxastic action in Doxastic Modal Logic, CEUR Workshop Proceedings 2546 (2019) 21–34.
[68] A. I. Abdula, H. A. Baluta, N. P. Kozachenko, D. A. Kassim, Peculiarities of using of the Moodle test tools in philosophy teaching, CTE Workshop Proceedings 7 (2020) 306–320. doi: 10.55056/cte.362 .
[69] A. I. Abdula, H. A. Baluta, N. P. Kozachenko, D. A. Kassim, F. M. Zhuravlev, The Use of Moodle in the Teaching of Philosophy and Distance Learning, in: S. Semerikov, V. Osadchyi, O. Kuzminska (Eds.), Proceedings of the 1st Symposium on Advances in Educational Technology - Volume 1: AET, INSTICC, SciTePress, 2022, pp. 616–630. doi: 10.5220/0010926600003364 .
[70] S. O. Semerikov, T. A. Vakaliuk, I. S. Mintii, V. A. Hamaniuk, V. N. Soloviev, O. V. Bondarenko, P. P. Nechypurenko, S. V. Shokaliuk, N. V. Moiseienko, V. R. Ruban, Development of the computer vision system based on machine learning for educational purposes, Educational Dimension 5 (2021) 8–60. doi: 10.31812/educdim.4717 .
[71] T. Vakaliuk, O. Spirin, V. Kontsedailo, Formation of digital competence of CS bachelors in the use of cloud-based learning environments, Educational Technology Quarterly 2021 (2021) 388–401. doi: 10.55056/etq.26 .
[72] A. V. Ryabko, O. V. Zaika, R. P. Kukharchuk, T. A. Vakaliuk, V. V. Osadchyi, Methods for predicting the assessment of the quality of educational programs and educational activities using a neuro-fuzzy approach, CTE Workshop Proceedings 9 (2022) 154–169. doi: 10.55056/cte.112 .
[73] Y. V. Prystupa, V. A. Hamaniuk, Results of integration of Ukrainian education into the European educational area, Educational Dimension 4 (2021) 8–24. doi: 10.31812/educdim.v56i4.4392 .
[74] T. Kramarenko, K. Bondar, O. Shestopalova, The ICT usage in teaching mathematics to students with special educational needs, Journal of Physics: Conference Series 1840 (2021) 012009. doi: 10.1088/1742- 6596/1840/1/012009 .
[75] O. P. Shestopalova, T. Y. Goncharova, The phenomenon of “clip thinking” in the educational and cognitive activities of students of natural and physical-mathematical educational profile, Journal of Physics: Conference Series 2288 (2022) 012036. doi: 10.1088/1742-6596/2288/1/012036 .
[76] O. Pronina, O. Piatykop, The Decision Support System Education Career Choice Using Fuzzy Model, in: N. Sharonova, V. Lytvyn, O. Cherednichenko, Y. Kupriianov, O. Kanishcheva, T. Hamon, N. Grabar, V. Vysotska, A. Kowalska-Styczen, I. Jonek-Kowalska (Eds.), Proceedings of the 5th International Conference on Computational Linguistics and Intelligent Systems (COLINS 2021). Volume I: Main Conference, Lviv, Ukraine, April 22-23, 2021, volume 2870 of CEUR Workshop Proceedings, CEUR-WS.org, 2021, pp. 1204–1214. URL: https://ceur-ws.org/Vol-2870/paper88.pdf.
[77] O. I. Piatykop, O. I. Pronina, I. B. Tymofieieva, I. D. Palii, Early literacy with augmented reality, Educational Dimension 6 (2022) 131–148. doi: 10.31812/educdim.4491 .
[78] O. Pronina, O. Piatykop, Recognition of violations of individual labor protection rules using a convolutional neural network, in: 17th IEEE International Conference on Computer Sciences and Information Technologies, CSIT 2022, Lviv, Ukraine, November 10-12, 2022, IEEE, 2022, pp. 69–72. doi: 10.1109/CSIT56902.2022.10000582 .
[79] O. V. Klochko, V. M. Fedorets, A. D. Uchitel, V. V. Hnatyuk, Methodological aspects of using augmented reality for improvement of the health preserving competence of a Physical Education teacher, in: O. Y. Burov, A. E. Kiv (Eds.), Proceedings of the 3rd International Workshop on Augmented Reality in Education, Kryvyi Rih, Ukraine, May 13, 2020, volume 2731 of CEUR Workshop Proceedings, CEUR-WS.org, 2020, pp. 108–128. URL: https://ceur-ws.org/Vol-2731/paper05.pdf.
[80] M. B. Yevtuch, V. M. Fedorets, O. V. Klochko, M. P. Shyshkina, A. V. Dobryden, Development of the health-preserving competence of a physical education teacher on the basis of N. Bernstein’s theory of movements construction using virtual reality technologies, in: S. H. Lytvynova, S. O. Semerikov (Eds.), Proceedings of the 4th International Workshop on Augmented Reality in Education (AREdu 2021), Kryvyi Rih, Ukraine, May 11, 2021, volume 2898 of CEUR Workshop Proceedings, CEUR-WS.org, 2021, pp. 294–314. URL: https://ceur-ws.org/Vol-2898/paper16.pdf.
[81] O. V. Klochko, V. M. Fedorets, Using immersive reality technologies to increase a physical education teacher’s health-preserving competency, Educational Technology Quarterly 2022 (2022) 276–306. doi: 10.55056/etq.431 .