Description:
1. R. M. Balabai, М. V. Naumenko, Methodology of converting of the
coordinates of the basis atoms in a unit cell of crystalline β-Ga2О3, specified in a
monoclinic crystallographic system, in the laboratory cartesian coordinates for
computer applications, Photoelectronics 29 (2020) 12-22.
http://photoelectronics.onu.edu.ua/issue/view/13698.
2. Nishant Singh Jamwal, and Amirkianoosh Kiani, Gallium Oxide
Nanostructures: A Review of Synthesis, Properties and Applications,
Nanomaterials 2022, 12(12), 2061; https://doi.org/10.3390/nano12122061.
3. Chen, X.; Ren, F.; Gu, S.; Ye, J. Review of gallium-oxide-based solarblind ultraviolet photodetectors. Photonics Res. 2019, 7, 381-415,
https://doi.org/10.1364/PRJ.7.000381.
4. S. I. Stepanov, V. I. Nikolaev, V. E. Bourgov, A. E. Romanov, Gallium
Oxide: properties and applications – a review, Rev. Adv. Mater. Sci. 44 (2016) 63-
86
5. Z. Galazka, β-Ga2O3 for wide-bandgap electronics and optoelectronics,
Semicond. Sci. Technol. 33 (11) (2018) 113001, https://doi.org/10.1088/1361-
6641/aadf78.
6. J. Park, R. McClintock, M. Razeghi, Ga2O3 metal-oxide-semiconductor
field effect transistors on sapphire substrate by MOCVD, Semicond. Sci. Technol.
34 (8) (2019) 08LT01, https://doi.org/10.1088/1361-6641/ab2c17.
7. Z. Y. Hu, K. Nomoto, W. S. Li, N. Tanen, K. Sasaki, A. Kuramata, T.
Nakamura, D. Jena, H. G. Xing, Enhancement-Mode Ga2O3 vertical transistors
with breakdown voltage >1 kV, IЕЕЕ Electr. Device L 39 (6) (2018) 869,
https://doi.org/ 10.1109/LED.2018.2830184.
8. Z. Y. Hu, K. Nomoto, W. S. Li, L. J. Zhang, J. H. Shin, N. Tanen, T.
Nakamura, D. Jena, H. G. Xing, Demonstration of Ga2O3 trench MOS-type
Schottky barrier diodes, IEEE 75th Annual Device Research Conf. (Drc) 1-2
(2017) 17082338, https://doi.org/ 10.1109/D RC.2017.7999399.
9. J. C. Yang, F. Ren, M. Tadjer, S. J. Pearton, A. Kuramata, 2300V Reverse
Breakdown Voltage Ga2O3 Schottky Rectifiers, Ecs. J. Solid State Scі. 7 (5) (2018)
Q92, https://doi.org/10.1149/2.0241805jss.
10. S. Rafique, L. Han, and H. P. Zhao, Thermal annealing effect on βGa2O3 thin film solar blind photodetector heteroepitaxially grown on sapphire
substrate, Phys Status Solidi A 214 (8) (2017) 1700063,
https://doi.org/10.1002/pssa.201700063.
11. S. J. Pearton, Ren Fan, Tadjer Marko, Kim Jihyun, Perspective: Ga2O3
for ultra-high power rectifiers and MOSFETS, J. Appl. Phys. 124 (22) (2018)
220901, https://doi.org/10.1063/1.5062841.
12. H. Murakami, K. Nomura, K. Goto, K. Sasaki, K. Kawara, Q. T. Thieu,
R. Togashi, Y. Kumagai, M. Higashiwaki, A. Kuramata, S. Yamakoshi, B.
Monemar, A. Koukitu, Homoepitaxial growth of β-Ga2O3 layers by halide vapor
phase epitaxy, Appl Phys Express 8 (1) (2015) 015503,
https://doi.org/10.7567/APEX.8. 015503.
13. B. Kucukgok, D. J. Mandia, J. H. Leach, K. R. Evans, J. A. Eastman, H.
Zhou, J. Hryn, J. W. Elam, A. Yanguas-Gil, Optical and structural properties of Si
doped β-Ga2O3 (010) thin films homoepitaxially grown by halide vapor phase
epitaxy, arXiv: Applied Physics (2019)
https://doi.org/10.48550/arXiv.1906.09306.
14. T. Oishi, K. Harada, Y. Koga, M. Kasu, Conduction mechanism in
highly doped β-Ga2O3 (201) single crystals grown by edge-defined film-fed growth
method and their Schottky barrier diodes, Jpn. J. Appl. Phys. 55 (3) (2016)
030305, https://doi.org/10.7567/jjap.55.030305.
15. A. T. Neal, S. Mou, S. Rafique, H. Zhao, E. Ahmadi, J. S. Speck, K. T.
Stevens, J. D. Blevins, D. B. Thomson, N. Moser, K. D. Chabak, G. H. Jessen,
Donors and deep acceptors in β-Ga2O3, Appl. Phys. Lett. 113 (6), (2018) 062101,
https://doi.org/ 10.1063/1.5034474.
16. K. Ghosh, U. Singisetti, Impact ionization in β-Ga2O3, J. Appl. Phys. 124
(8) (2018) 085707, https://doi.org/10.1063/1.5034120.
17. M. Higashiwaki, β-Ga2O3 material properties, growth technologies, and
devices: a review, AAPPS Bull. 32 (2022) 3, https://doi.org/10.1007/s43673-021-
00033-0.
18. R. Roy, V. G. Hill, E. F. Osborn, Polymorphism of Ga2O3 and the
system Ga2O3-H2O, J. Am. Chem. Soc. 74 (3) (1952) 719-722,
https://doi.org/10.1021/ja01123a039.
19. H. Aida, К. Nishiguchi, Н. Takeda, N. Aota, K. Sunakawa. Y. Yaguchi,
Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method,
Japanese Journal of Applied Physics 47 (11R) (2008) 8506-8509,
https://doi.org/10.1143/JJAP.47.8506.
20. S. Yoshioka, H. Hayashi, А. Kuwabara F. Oba, K. Matsunaga, I. Tanaka,
Structures and energetics of Ga2O3 polymorphs, Journal of Physics: Condensed
Matter. 19 (34) (2007) 346211, https://doi.org/10.1088/0953-8984/19/34/346211.
21. Geller, S. Crystal structure of β-Ga2O3, J. Chem. Phys. 33 (1960) 676-
684, https://doi.org/10.1063/1.1731237.
22. C. Cocchi, Н. Zschiesche, D. Nabok, А. Mogilatenko, М. Albrecht, Z.
Galazka, Н. Kirmse, С. Draxl, С. Т. Koch, Atomic signatures of local environment
from core-level spectroscopy in β-Ga2O3, Phys. Rev. B 94 (2016) 075147,
https://doi.org/10.1103/PhysRevB.94.075147.
23. J. Ahman, G. Svensson, J. Albertsson, A reinvestigation of β-gallium
oxide, Acta Cryst. C52 (1996) 1336, https://doi.org/10.1107/S0108270195016404.
24. D. Guo, Q. Guo, Z. Chen, Z. Wu, P. Li, W. Tang, Review of Ga2O3-
based optoelectronic devices, Mater. Today Phys. 11 (2019) 100157,
https://doi.org/10.1016/j.mtphys.2019.100157.
25. B. Anam, N. Gaston, Structural, thermal, and electronic properties of
two-dimensional gallium oxide (β-Ga2O3) from first-principles design Chem. Phys.
Chem. 22 (22) (2021) 2362-2370, https://doi.org/10.1002/cphc.202100267.
26. X. Luo, J. Yang, H. Liu, X. Wu, Y. Wang, Y. Ma, S.-H. Wei, X. Gong
and H. Xiang, J. Am. Chem. Soc. 133 (2011) 16285-16290,
https://doi.org/10.1021/ja2072753.
27. Y. Wang, M. Miao, J. Lv, L. Zhu, K. Yin, H. Liu, Y. Ma, An effective
structure prediction method for layered materials based on 2D particle swarm
optimization algorithm, J. Chem. Phys. 137 (2012) 224108,
https://doi.org/10.1063/1.4769731.
28. F. Peng, M. Miao, H. Wang, Q. Li, Y. Ma, Predicted Lithium-Boron
Compounds under High Pressure, J. Am. Chem. Soc. 134 (2012) 18599-18605,
https://doi.org/10.1021/ja308490a.
29. B. A. Khalil, N. Gaston, Two-dimensional aluminium, gallium, and
indium metallic crystals by first-principles design, J. Phys.: Condens. Matter. 33
(2021) 125901, https://doi.org/10.1088/1361-648X/abd3d9.
30. T. Onuma, S. Saito, K. Sasaki, K. Goto, T. Masui, T. Yamaguchi, T.
Honda, A. Kuramata, M. Higashiwaki, Temperature-dependent exciton resonance
energies and their correlation with IR-active optical phonon modes in β-Ga2O3
single crystals, Appl. Phys. Lett. 108 (10) (2016) 101904,
https://doi.org/10.1063/1.4943175.
31. В. Tattersfield, First-principles investigation of doping and alloying of βGa2O3, McKelvey School of Engineering Theses & Dissertations (2020) 558,
https://openscholarship.wustl.edu/eng_etds/558.
32. A. H. Burachenko, D. V. Biloplotov, I. A. Prudaiev, D.A. Sorokyn, V.F.
Tarasenko, O. P. Tolbanov, Liuminestsentsiia krystaliv Ga2O3 pry zbudzhenni
puchkom elektroniv, shcho vtikaiut, Optyka i spektroskopiia 123 (6) (2017) 861-
865, https://doi.org/10.7868/S0030403417110046.
33. V. I. Oleshko, V. F. Tarasenko, D. V. Biloplotov, S. S. Vilchynska,
Spektralno-kinetychni zakonomirnosti svitinnia krystaliv Ga2O3 pry zbudzhenni
puchkom elektroniv nanosekundnoi ta subnanosekundnoi diialnosti, Optyka ta
spektroskopiia, 125 (5) (2018) 595-599, https://doi.org/10.21883/OS.2018.
11.46816.118-18.
34. B. M. Afanasiev, V. B. Bychkov, V. D. Lartsev V. P. Pudov, V. I.
Solomonov, S. A. Shunailov, V. V. Heneralov, A. A. Hromov, Parametry elektronnykh puchkiv, shcho heneruiutsia pryskoriuvachamy RADAN-220 ta
RADAN-EKSPERT, PTE 5 (2005) 88-92, https://elibrary.ru/item.asp?id=9156257.
35. Ye. Kh. Baksht, M. V. Yerofieiev, V. F. Tarasenko, V. I. Oleshko,
Spektralni ta amplitudno-chasovi kharakterystyky vyprominiuvannia Cherenkova
pry enerhiiakh elektroniv u sotni keV, Tomsk: STT (2020) 180 s. (Seriia
«Vyprominiuvannia. Puchky. Plazma», Vyp. 4),
https://earchive.tpu.ru/bitstream/11683/64319/1/m-2020-m39.pdf.
36. P. Vogt, O. Bierwagen, Reaction kinetics and growth window for
plasma-assisted molecular beam epitaxy of Ga2O3: incorporation of Ga vs. Ga2O
desorption, Appl. Phys. Lett. 108 (7) (2016) 072101,
https://doi.org/10.1063/1.4942002.
37. K. Sasaki, A. Kuramata, T. Masui, E. G. Villora, K. Shimamura, S.
Yamakoshi, Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular
beam epitaxy, Appl. Phys. Express. 5 (3) (2012) 035502,
https://doi.org/10.1143/APEX.5.035502.
38. E. Ahmadi, O. S. Koksaldi, S. W. Kaun, Y. Oshima, D. B. Short, U. K.
Mishra, J. S. Speck, Ge doping of β-Ga2O3 films grown by plasma-assisted
molecular beam epitaxy, Appl. Phys. Express. 10 (4) (2017) 041102,
https://doi.org/10.7567/APEX.10.041102.
39. N. K. Kalarickal, Z. Xia, J. McGlone, S. Krishnamoorthy, W. Moore, M.
Brenner, A. R. Arehart, S. A. Ringel, S. Rajan, Mechanism of Si doping in plasma
assisted MBE growth of β-Ga2O3, Appl. Phys. Lett. 115 (15) (2019) 152106,
https://doi.org/10.1063/1.5123149.
40. A. Mauze, Y. Zhang, T. Itoh, E. Ahmadi, J. S. Speck, Sn doping of (010)
β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy. Appl. Phys.
Lett. 117 (22) (2020) 222102, https://doi.org/10.1063/5.0027870.
41. W. Mi, X. J. Du, C. N. Luan, H. D. Xiao, J. Ma, Electrical and optical
characterizations of β-Ga2O3:Sn films deposited on MgO (110) substrate by
MOCVD, Rsc. Adv. 4 (58) (2014) 30579, https://doi.org/10.1039/C4RA02479F.
42. Y. Peng, N. S. Yu, Y. Xiang, J. Liu, L. W. Cao, S. Y. Huang, One-step
hydrothemal synthesis of nitrogen doped β-Ga2O3 nanostructure and its optical
Properties, J. Nanosci. Nanotechno 18 (8) (2018) 5654, https://doi.org/10.1166/
jnn.2018.15376.
43. L. Yuan, H. P. Zhang, R. X. Jia, L. X. Guo, Y. Zhang, Y. Zhang, Appl.
Surf. Sci. 433 (2018), 530, https://doi.org/10.1016/j.apsusc.2017.10.075.
44. A. Jayawardena, R. P. Ramamurthy, A. C. Ahyi, D. Morisette, S. Dhar,
Interface trapping in (201) β-Ga2O3 MOS capacitors with deposited dielectrics,
Appl. Phys. Lett. 112 (19) (2018) 192108, https://doi.org/10.1063/1.5019270.
45. M. A. Bhuiyan, H. Zhou, R. Jiang, E. X. Zhang, D. M. Fleetwood, P. D.
Ye, T. P. Ma, Еffect of Аl2О3 passivation on electrical properties of β-Ga2O3 FET,
IEEE Electr. Device Lett. 39 (7) (2018) 1022-1025,
https://doi.org/10.1109/LED.2018.2841899.
46. H. Dong, W. X. Mu, Y. Hu, Q. M. He, B. Fu, H. W. Xue, Y. Qin, G. Z.
Jian, Y. Zhang, S. B. Long, Z. T. Jia, H. B. Lv, Q. Liu, X. T. Tao, M. Liu, C-V and
J-V investigation of HfO2/Al2O3 bilayer dielectrics MOSCAPs on (100) β-Ga2O3,
AІР Adv. 8 (6) (2018) 065215, https://doi.org/10.1063/1.5031183.
47. H. Zhang, R. Jia, Y. Lei, X. Tang, Y. Zhang, Y. Zhang, Leakage current
conduction mechanisms and electrical properties of atomic-layer-deposited
HfO2/Ga2O3 MOS capacitors J. Phys. D: Appl. Phys. 51 (7) (2018) 075104,
https://doi.org/10.1088/1361-6463/aaa60d.
48. S. J. Pearton, J. C. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, M. A.
Mastro, A review of Ga2O3 materials, processing, and devices, Appl. Phys. Rev. 5
(1) (2018) 011301, https://doi.org/10.1063/1.5006941.
49. D. I. Shahin, M. J. Tadjer, V. D. Wheeler, A. D. Koehler, T. J. Anderson,
C. R. Eddy, A. Christou, Electrical characterization of ALD HfO2 high-k
dielectrics on (201) β-Ga2O3, Appl. Phys. Lett. 112 (4) (2018) 042107,
https://doi.org/10.1063/1.5006276.
50. X. J. Du, Z. Li, C. N. Luan, W. G. Wang, M. X. Wang, X. J. Feng, H. D.
Xiao, J. Ma, Preparation and characterization of Sn-doped β-Ga2O3 homoepitaxial films by MOCVD, J. Mater. Sci. 50 (8), 3252 (2015),
https://doi.org/10.1007/s10853-015-8893-4.
51. H. Okumura, M. Kita, K. Sasaki, A. Kuramata, M. Higashiwaki, J. S.
Speck, Systematic investigation of the growth rate of β-Ga2O3 (010) by plasmaassisted molecular beam epitaxy, Appl. Phys. Express 7 (9) (2014) 095501,
https://doi.org/10.7567/APEX.7.095501.
52. S. Lee, K. Kaneko, S. Fujita, Homoepitaxial growth of beta gallium
oxide films by mist chemical vapor deposition, Jpn. J. Appl. Phys. 55 (12) (2016)
1202B8, https://doi.org/10.7567/JJAP.55.1202B8.
53. M. Baldini, M. Albrecht, A. Fiedler, K. Irmscher, R. Schewski, G.
Wagner, Choice-Si- and Sn-Doped Homoepitaxial β-Ga2O3 Layers Grown by
MOVPE on (010)-oriented substrates, Ecs J. Solid State Sc. 6 (2) (2017) Q3040-
Q3044, https://doi.org/10.1149/2.0081702jss.
54. M. Baldini, M. Albrecht, A. Fiedler, K. Irmscher, D. Klimm, R.
Schewski, G. Wagner, Semiconducting Sn-doped β-Ga2O3 homoepitaxial layers
grown by metal organic vapour-phase epitaxy, J. Mater. Sci 51 (7) (2016) 3650,
https://doi.org/10.1007/s10853-015-9693-6.
55. D. Gogova, M. Schmidbauer, A. Kwasniewski, Homo- and
heteroepitaxial growth of Sn-doped β-Ga2O3 layers by MOVPE, Crystengcomm 17
(35) (2015) 6744, https://doi.org/10.1039/C5CE01106J.
56. M. Orita, H. Ohta, M. Hirano, H. Hosono, Deep-ultraviolet transparent
conductive β-Ga2O3 thin films, Appl. Phys. Lett. 77 (25) (2000) 4166,
https://doi.org/10.1063/1.1330559.
57. M. Singh, M. A. Casbon, M. J. Uren, J. W. Pomeroy, S. Dalcanale, S.
Karboyan, P. J. Tasker, M. H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, M.
Higashiwaki, M. Kuball. Pulsed large signal RF performance of field-plated Ga2O3
MOSFETs, IEEE Electron Device Lett. 39 (2018) 1572,
https://doi.org/10.1109/LED.2018.2865832.
58. A. K. Singh, M. Gupta, V. Sathe, Y. S. Katharria, Effect of annealing
temperature on β-Ga2O3 thin films deposited by RF sputtering method, Superlattices Microstruct., 156 (2021) 106976,
https://doi.org/10.1016/j.spmi.2021.106976.
59. M. K. Yadav, A. Mondal, S. Das, S. K. Sharma, A. Bag, Impact of
annealing temperature on band-alignment of PLD grown Ga2O3/Si (100)
heterointerface, J. Alloys. Compd. 819 (2020) 153052,
https://doi.org/10.1016/j.jallcom.2019.153052.
60. H. Shen, K. Baskaran, Y. Yin, K. Tian, L. Duan, X. Zhao, А. Tiwari,
Effect of thickness on the performance of solar blind photodetectors fabricated
using PLD grown β-Ga2O3 thin films, J. Alloys. Compd. 822 (2020) 153419,
https://doi.org/10.1016/j.jallcom.2019.153419.
61. Z. Li, T. Jiao, J. Yu, D. Hu, Y. Lv, W. Li, X. Dong, B. Zhang, Y. Zhang,
Z. Feng, G. Li, G. Du, Single crystalline β-Ga2O3 homoepitaxial films grown by
MOCVD, Vacuum 178 (2020) 109440, https://doi.org/10.1016/
j.vacuum.2020.109440.
62. Q. Cao, L. He, H. Xiao, X. Feng, Y. Lv, J. Ma, β-Ga2O3 epitaxial films
deposited on Epi-GaN/sapphire (0001) substrates by MOCVD, Mater. Sci.
Semicond. Process 77 (2018) 58, https://doi.org/10.1016/j.mssp.2018.01.010.
63. C. Dezelah, J. Niinistö, K. Arstila, L. Niinistö, C. H. Winter, Atomic
layer deposition of Ga2O3 films from a dialkylamido-based precursor, Chem.
Mater. 18 (2006) 471, https://doi.org/10.1021/cm0521424.
64. S. H. Lee, K. M. Lee, S. W. Lee, Influences of process temperature on a
phase of Ga2O3 thin films grown by atomic layer deposition on sapphire. Bull.
Korean Chem. Soc.41 (2020) 1190, https://doi.org/10.1002/bkcs.12135.
65. D. Hiller, J. Julin, A. Chnani, S. Strehle, Silicon surface passivation by
ALD-Ga2O3: thermal vs. plasma-enhanced atomic layer deposition, IEEE J.
Photovolt. 10 (2020) 959, https://doi.org/10.1109/JPHOTOV.2020.2989201.
66. K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, S. Yamakoshi, MBE
Grown Ga2O3 and its power device applications, J. Cryst. Growth 378 (2013) 591,
https://doi.org/10.1016/j.jcrysgro.2013.02.01.
67. A. S. Pratiyush, Z. Xia, S. Kumar, Y. Zhang, C. Joishi, R. Muralidharan,
S. Rajan, D. N. Nath, MBE-grown β-Ga2O3-based Schottky UV-C photodetectors
with rectification ratio ~107. IEEE Photonics Technol. Lett. 30 (2018) 2025,
https://doi.org/10.1109/LPT.2018.2874725.
68. Y. Yang, X.-Y. Zhang, C. Wang, F.-B. Ren, R.-F. Zhu, C.-H. Hsu, W.-
Y. Wu, М. Wuu, P. Gao, Y.-J. Ruan, S.-Y. Lien, W.-Z. Zhu, Compact Ga2O3 thin
films deposited by plasma enhanced atomic layer deposition at low temperature,
Nanomaterials 12 (2022) 1510, https://doi.org/10.3390/nano12091510.
69. D. Choi, K.-B. Chung, J.-S. Park, Low temperature Ga2O3 atomic layer
deposition using gallium tri-isopropoxide and water. thin solid films 546 (2013)
31, https://doi.org/10.1016/j.tsf.2013.03.066.
70. X.-Y. Zhang, Y. Yang, Z.-X. Zhang, X.-P. Geng, C.-H. Hsu, W.-Y. Wu,
S.-Y. Lien, W.-Z. Zhu, Deposition and characterization of RP-ALD SiO2 thin films
with different oxygen plasma powers, Nanomaterials 11 (5) (2021) 1173,
https://doi.org/10.3390/nano11051173.
71. C.-H. Hsu, Z.-X. Zhang, P.-H. Huang, W.-Y. Wu, S.-L. Ou, S.-Y. Lien,
C.-J. Huang, M.-K. Lee, W.-Z. Zhu, Effect of plasma power on the structural
properties of tin oxide prepared by plasma-enhanced atomic layer deposition,
Ceram. Int. 47 (2021) 8634-8641, https://doi.org/10.1016/j.ceramint.2020.11.232.
72. H. Y. He, M. A. Blanco, R. Pandey, Electronic and thermodynamic
properties of β-Ga2O3, Appl. Phys. Lett. 88 (2006) 3,
https://doi.org/10.1063/1.2218046.
73. K. Yamaguchi, First principles study on electronic structure of β-Ga2O3,
Solid State Commun. 131 (2004) 739-744,
https://doi.org/10.1016/j.ssc.2004.07.030.
74. C. Li, J. L. Yan, L. Y. Zhang, G. Zhao, Electronic structures and optical
properties of Zn-doped β-Ga2O3 with different doping sites, Chin. Phys. B 21
(2012) 6, https://doi.org/10.1088/1674-1056/21/12/127104.
75. L. K. Ping, M. A. Mohamed, A. K. Mondal, M. F. M. Taib, M. H.
Samat, D. D. Berhanuddin, P. S. Menon, R. Bahru, First-principles studies for
electronic structure and optical properties of strontium doped β-Ga2O3,
Мcromachines 12 (2021) 16, https://doi.org/10.3390/mi12040348.
76. Y. Zhao, J. Yan, First-principles study of n-type tin/fluorine codoped
beta-gallium oxides, J. Semicond. 36 (2015) 82004, https://doi.org/10.1088/1674-
4926/36/8/082004.
77. L. Y. Zhang, J. L. Yan, Y. J. Zhang, T. Li, X. W. Ding, First-principles
study on electronic structure and optical properties of N-doped p-type β-Ga2O3,
Sci. China-Phys. Mech. Astron. 55 (2012) 19-24, https://doi.org/10.1007/s11433-
011-4582-8.
78. Y. J. Zhang, J. L. Yan, G. Zhao, W. F. Xie, First-principles study on
electronic structure and optical properties of Sn-doped β-Ga2O3, Phys. B-Condens.
Matter. 405 (2010) 3899-3903, https://doi.org/10.1016/j.physb.2010.06.024.
79. J. Furthmuller, F. Bechstedt, Quasiparticle bands and spectra of Ga2O3
polymorphs, Phys. Rev. B 93 (2016) 16, https://doi.org/10.1103/
PhysRevB.93.115204.
80. L. P. Dong, R. X. Jia, B. Xin, B. Peng, Y. M. Zhang, Effects of oxygen
vacancies on the structural and optical properties of β-Ga2O3, Sci. Rep. 7 (2017)
12, https://doi.org/10.1038/srep40160.
81. X. F. Ma, Y. M. Zhang, L. P. Dong, R. X. Jia, First-principles
calculations of electronic and optical properties of aluminum-doped β-Ga2O3 with
intrinsic defects, Results Phys. 7 (2017) 1582-1589,
https://doi.org/10.1016/j.rinp.2017.04.023.
82. H. Y. He, R. Orlando, M. A. Blanco, R. Pandey, E. Amzallag, I. Baraille,
M. Rerat, First-principles study of the structural,electronic, and optical properties
of Ga2O3 in its monoclinic and hexagonal phases, Phys. Rev. B 74 (2006) 195123,
https://doi.org/10.1103/PhysRevB.74.195123.
83. H. Peelaers, C. G. Van de Walle, Brillouin zone and band structure of βGa2O3, Phys. Status Solidi B-Basic Solid State Phys. 252 (2015) 828-832,
https://doi.org/10.1002/pssb.201451551.
84. A. Navarro-Quezada, S. Alamé, N. Esser, J. Furthmüller, F. Bechstedt,
Z. Galazka, D. Skuridina, P. Vogt, Near valence-band electronic properties of
semiconducting β-Ga2O3 (100) single crystals, Phys. Rev. B 92 (2015) 195306,
https://doi.org/10.1103/PhysRevB.92.195306.
85. J. B. Varley, J. R. Weber, A. Janotti, C. G. Van de Walle, Oxygen
vacancies and donor impurities in β-Ga2O3, Appl. Phys. Lett. 97 (2010) 142106,
https://doi.org/ 10.1063/1.3499306.
86. Y. Zhang, A. Neal, Z. Xia, C. Joishi, J. M. Johnson, Y. Zheng, S. Bajaj,
M. Brenner, D. Dorsey, K. Chabak, G. Jessen, J. Hwang, S. Mou, J. P. Heremans,
S. Rajan, Demonstration of high mobility and quantum transport in modulationdoped β-(AlxGa1−x)2O3/Ga2O3 heterostructures, Appl. Phys. Lett. 112 (17) (2018)
173502, https://doi.org/10.1063/1.5025704.
87. T. Onuma, S. Saito, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, M.
Higashiwaki, Valence band ordering in β-Ga2O3 studied by polarized transmittance
and reflectance spectroscopy, Jpn. J. Appl. Phys. 54 (11) (2015) 112601,
https://doi.org/10.7567/JJAP.54.112601.
88. T. Zacherle, P. C. Schmidt, М. Martin, Ab-initio calculations on the
defect structure of β-Ga2O3, Physical review B 87 (2013) 235206,
https://doi.org/10.1103/ PhysRevB.87.235206.
89. J. L. Lyons, A survey of acceptor dopants for β-Ga2O3, Semiconductor
Science and Technology 33 (5) (2018) 05LT02 https://doi.org/10.1088/1361-
6641/aaba98.
90. A. Kyrtsos, M. Matsubara, E. Bellotti, On the feasibility of p-type
Ga2O3, Appl. Phys. Lett., 112 (2018) 032108, https://doi.org/10.1063/1.5009423.
91. K. A. Mengle, G. S. Shi, D. Bayerl, E. Kioupakis, First-principles
calculations of the near-edge optical properties of β-Ga2O3, Appl. Phys. Lett., 109
(2016) 212104, https://doi.org/10.1063/1.4968822.
92. А. Mock, R. Korlacki, C. Briley, V. Darakchieva, B. Monemar, Y.
Kumagai, K. Goto, M. Higashiwaki, M. Schubert, Band-to-band transitions,
selection rules, effective mass and exciton binding energy parameters in monoclinic β-Ga2O3, Phys. Rev. B, 96 (2017) 245205,
https://doi.org/10.1103/PhysRevB.96.245205.
93. C. Q. Zhang, F. Liao, X. Liang, H. X. Gong, Q. Liu, L. Li, X. F. Qin, X.
Huang, C. J. Huang, Electronic transport properties in metal doped beta-Ga2O3: a
first principles study, Phys. B 562 (2019) 124,
https://doi.org/10.1016/j.physb.2019.03.004.
94. Q. D. Ho, T. Frauenheim, P. Deák, Theoretical confirmation of the
polaron model for the Mg acceptor in β-Ga2O3, J. Appl. Phys., 124 (2018) 145702,
https://doi.org/10.1063/1.5049861.
95. X. F. Cai, F. P. Sabino, A. Janotti, S. H. Wei, Approach to achieving a ptype transparent conducting oxide: doping of bismuth-alloyed Ga2O3 with a
strongly correlated band edge state, Phys. Rev. B, 103 (2021) 115205,
https://doi.org/10.1103/PhysRevB.103.115205.
96. T. Gake, Y. Kumagai, F. Oba, First-principles study of self-trapped holes
and acceptor impurities in Ga2O3 polymorphs, Phys. Rev. Mater., 3 (2019) 044603,
https://doi.org/10.1103/PhysRevMaterials.3.044603.
97. H. Peelaers, J. L. Lyons, J. B. Varley, C. G. Van de Walle, Deep
acceptors and their diffusion in Ga2O3, APL Mater., 7 (2019) 022519,
https://doi.org/10.1063/1.5063807.
98. J. N. Ma, J. Y. Lin, J. Y. Liu, F. Li, Y. C. Liu, G. C. Yang, Achieving
high conductivity p-type Ga2O3 through Al-N and In-N co-doping, Chem. Phys.
Lett. 746 (2020) 137308, https://doi.org/10.1016/j.cplett.2020.137308.
99. L. Dong, R. X. Jia, C. Li, B. Xin, Y. M. Zhang, Ab initio study of Ndoped β-Ga2O3 with intrinsic defects: the structural, electronic and optical
properties, J. Alloys Compd., 712 (2017) 379,
https://doi.org/10.1016/j.jallcom.2017.04.020.
100. L. Li, F. Liao, X. T. Hu, The possibility of n-p codoping to realize рtype β-Ga2O3, Superlattices Microstruct., 2020, 141, 106502,
https://doi.org/10.1016/j.spmi.2020. 106502.
101. C. Ma, Z. Wu, Z. Jiang, Y. Chen, W. Ruan, H. Zhang, H. Zhu, G.
Zhang, J. Kang, T.-Y. Zhang, J. Chub, Z. Fang, Exploring the feasibility and
conduction mechanisms of p-type nitrogen-doped β-Ga2O3 with high hole
mobility, J. Mater. Chem. C, 10 (2022) 6673-6681,
https://doi.org/10.1039/d1tc05324h.
102. H. He, R. Orlando, M. A. Blanco, R. Pandey, E. Amzallag, I. Baraille,
M. Rérat, First-principles study of the structural, electronic, and optical properties
of Ga2O3 in its monoclinic and hexagonal phases, Phys. Rev. B. 74 (2006) 195123,
https://doi.org/ 10.1103/PhysRevB.74.195123.
103. J. B. Varley, A. Janotti, C. Franchini, C. G. Van de Walle, Role of selftrapping in luminescence and p-type conductivity of wide-band-gap oxides, Phys.
Rev. B. 85 (8) (2012) 081109, https://doi.org/10.1103/PhysRevB.85.081109.
104. P. Deak, Q. Duy Ho, F. Seemann, B. Aradi, M. Lorke, T. Frauenheim,
Choosing the correct hybrid for defect calculations: a case study on intrinsic carrier
trapping in β-Ga2O3, Phys. Rev. B. 95 (7) (2017) 075208, https://doi.org/10.1103/
PhysRevB.95.075208.
105. Y. Li, A. Trinchi, W. Wlodarski, K. Galatsis, K. Kalantar-zadeh,
Investigation of the oxygen gas sensing performance of Ga2O3 thin films with
different dopants, https://doi.org/10.1016/S0925-4005(03)00171-0.
106. N. Ueda, H. Hosono, R. Waseda, H. Kawazoe, Synthesis and control of
conductivity of ultraviolet transmitting β-Ga2O3 single crystals, Appl. Phys. Lett.
70 (1997) 3561, https://doi.org/10.1063/1.119233.
107. M. Passlack, N. E. J. Hunt, E. F. Schubert, G. J. Zydzik, M. Hong, J. P.
Mannaerts, R. L. Opila, R. J. Fischer, Dielectric properties of electron‐beam
deposited Ga2O3 films, Appl. Phys. Lett. 64 (1994) 2715,
https://doi.org/10.1063/1.111452.
108. S. Müller, H. von Wenckstern, D. Splith, F. Schmidt, M. Grundmann,
Control of the conductivity of Si-doped β-Ga2O3 thin films via growth temperature
and pressure, Phys. Status Solidi A 211 (2014) 34,
https://doi.org/10.1002/pssa.201330025.
109. Е. Aubay, D. Gourier, Magnetic bistability and Overhauser shift of
conduction electrons in gallium oxide, Phys. Rev. B 47 (1993) 15023,
https://doi.org/10.1103/ PhysRevB.47.15023.
110. L. L. Liu, M. K. Li, D. Q. Yu, J. Zhang, H. Zhang, C. Qian, Z. Yang,
Fabrication and characteristics of N-doped β-Ga2O3 nanowires, Appl. Phys. A 98
(2010) 831, https://doi.org/10.1007/s00339-009-5538-y.
111. Q. Feng, J. Liu, Y. Yang, D. Pan, Y. Xing, X. Shi, X. Xia, H. Liang,
Catalytic growth and characterization of single crystalline Zn doped p-type βGa2O3 nanowires, J. Alloys Compd. 687 (2016) 964-968,
https://doi.org/10.1016/j.jallcom.2016.06.274.
112. M. K. Hudait, P. Modak, S. Hardikar, S. B. Krupanidhi, Zn
incorporation and band gap shrinkage in 𝑝-type GaAs, J. Appl. Phys. 82 (1997)
4931, https://doi.org/ 10.1063/1.366359.
113. G. J. van Gurp, T. van Dongen, G. M. Fontijn, J. M. Jacobs, D. L. A.
Tjaden, Interstitial and substitutional Zn in InP and InGaAsP, J. Appl. Phys. 65,
553 (1989), http://doi.org/10.1063/1.343140.
114. S. S. Pan, G. H. Li, L. B. Wang, Y. D. Shen, Y. Wang, T. Mei, X. Hu,
Surface localized exciton emission from undoped SnO2 nanocrystal films, Appl.
Phys. Lett. 95 (2009) 222112, https://doi.org/10.1063/1.3524196.
115. P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 136
(1964) B864, https://doi.org/10.1103/PhysRev.136.B864.
116. W. Kohn, L. J. Sham, Self-consistent equations including exchange and
correlation effects, Phys. Rev. 140 (1965) A1133, https://doi.org/10.1103/
PhysRev.140.A1133.
117. P. E. Blöchl, Projector augmented-wave method, Phys. Rev. B 50
(1994) 17953, https://doi.org/10.1103/PhysRevB.50.17953.
118. G. Kresse, D. Joubert, From ultrasoft pseudopotentials to the projector
augmented-wave method, Phys. Rev. B 59 (1999) 1758, https://doi.org/10.1103/
PhysRevB.59.1758.
119. G. Kresse, J. Furthmuller, Efficient iterative schemes for ab initio totalenergy calculations using a plane-wave basis set, Phys. Rev. B 54 (1996) 11169,
https://doi.org/10.1103/PhysRevB.54.11169.
120. J. P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient
approximation made simple, Phys. Rev. Lett. 77 (1996) 3865,
https://doi.org/10.1103/PhysRevLett.77.3865.
121. J. Heyd, G. E. Scuseria, M. Ernzerhof, Hybrid functionals based on a
screened Coulomb potential, J. Chem. Phys. 118 (2003) 8207,
https://doi.org/10.1063/1.1564060.
122. J. Heyd, G. E. Scuseria, M. Ernzerhof, Erratum: “Hybrid functionals
based on a screened Coulomb potential” J. Chem. Phys. 124 (2006) 219906,
https://doi.org/10.1063/1.2204597.
123. A. Kyrtsos, M. Matsubara, E. Bellotti, Migration mechanisms and
diffusion barriers of vacancies in Ga2O3, Phys. Rev. B 95 (2017) 245202,
https://doi.org/10.1103/PhysRevB.95.245202.
124. S. Lany, A. Zunger, Polaronic hole localization and multiple hole
binding of acceptors in oxide wide-gap semiconductors, Phys. Rev. B 80 (2009)
085202, https://doi.org/10.1103/PhysRevB.80.085202.
125. D. O. Scanlon, G. W. Watson, On the possibility of p-type SnO2, J.
Mater. Chem. 22 (2012) 25236, https://doi.org/10.1039/C2JM34352E.
126. K. H. L. Zhang, K. Xi, M. G. Blamire, R. G. Egdell, P-type transparent
conducting oxides, J. Phys.: Condens. Matter 28 (2012) 383002,
https://doi.org/10.1088/0953-8984/28/38/383002.
127. J. Robertson, S. J. Clark, Limits to doping in oxides, Phys. Rev. B 83
(2011) 075205, https://doi.org/10.1103/PhysRevB.83.075205.
128. T. Minami, T. Miyata, T. Yamamoto, Work function of transparent
conducting multicomponent oxide thin films prepared by magnetron sputtering,
Surf. Coat. Technol., 108 (1998) 583, https://doi.org/10.1016/S0257-
8972(98)00592-1.
129. J. Robertson, B. Falabretti, in Handbook of Transparent Conductors,
edited by D. Ginley, H. Hosono, D. C. Paine (Springer, New York, 2011), Chap. 2,
pp. 27-50
130. Z. Galazka, K. Irmscher, R. Uecker, R. Bertram, M. Pietsch, A.
Kwasniewski, M. Naumann, T. Schulz, R. Schewski, D. Klimm, M. Bickermann,
On the bulk β-Ga2O3 single crystals grown by the Czochralski method, J. Cryst.
Growth 404 (2014) 184, https://doi.org/10.1016/j.jcrysgro.2014.07.021.
131. M. H. Wong, K. Goto, Y. Morikawa, A. Kuramata, S. Yamakoshi, H.
Murakami, Y. Kumagai, M. Higashiwaki, All-ion-implanted planar-gate current
aperture vertical Ga2O3 MOSFETs with Mg-doped blocking layer, Appl. Phys.
Express 11 (6) (2018) 064102, https://doi.org/10.7567/APEX.11.064102.
132. Feng, Z., Bhuiyan, A. F. M. A. U., Kalarickal, N. K., Rajan, S., &
Zhao, H. (2020). Mg acceptor doping in MOCVD (010) β-Ga2O3, Applied Physics
Letters 117 (22) (2020) 222106, https://doi.org/10.1063/5.0031562.
133. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, S. Yamakoshi,
Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on singlecrystal β-Ga2O3 (010) substrates, Appl. Phys. Lett. 100 (2012) 013504,
https://doi.org/10.1063/1.3674287.
134. M. Higashiwaki, K. Sasaki, T. Kamimura, M. H. Wong, D.
Krishnamurthy, A. Kuramata, T. Masui, S. Yamakoshi, Depletion-mode Ga2O3
metal-oxide-semiconductor field-effect transistors on β-Ga2O3 (010) substrates and
temperature dependence of their device characteristics, Appl. Phys. Lett. 103
(2013) 123511, https://doi.org/10.1063/1.4821858.
135. К. Konishi, K. Goto, H. Murakami, Y. Kumagai, A. Kuramata, S.
Yamakoshi, M. Higashiwaki, 1-kV vertical Ga2O3 field-plated Schottky barrier
diodes, Appl. Phys. Lett. 110 (2017) 103506, https://doi.org/10.1063/1.4977857.
136. J. Yang, S. Ahn, F. Ren, S. J. Pearton, S. Jang, A. Kuramata, High
breakdown voltage (201) β-Ga2O3 schottky rectifiers, IEEE Electron Device Lett.
38 (2017) 906, https://doi.org/10.1109/LED.2017.2703609.
137. M. H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, M. Higashiwaki,
Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V, IEEE
Electron Device Lett. 37 (2016) 212, https://doi.org/10.1109/LED.2015.2512279.
138. A. J. Green, K. D. Chabak, E. R. Heller, R. C. Fitch, M. Baldini, A.
Fiedler, K. Irmscher, G. Wagner, Z. Galazka, S. E. Tetlak, A. Crespo, K. Leedy, G.
H. Jessen, 3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3
MOSFETs, IEEE Electron Device Lett. 37 (2016) 902-905,
https://doi.org/10.1109/LED.2016.2568139.
139. H. Zhou, M. Si, S. Alghamadi, G. Qiu, L. Yang, P. D. Ye, Highperformance depletion/enhancement-ode β-Ga2O3 on insulator (gooi) field-effect
transistors with record drain currents of 600/450 mA/mm, IEEE Electron Device
Lett. 38 (2017) 103-106, https://doi.org/10.1109/LED.2016.2635579.
140. H. Zhou, K. Maize, G. Qiu, A. Shakouri, P. D. Ye, β-Ga2O3 on
insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their
self-heating effect, Appl. Phys. Lett. 111 (2017) 092102,
https://doi.org/10.1063/1.5000735.
141. A. J. Green, K. D. Chabak, M. Baldini, N. Moser, R. Gilbert, R. C.
Fitch, G. Wagner, Z. Galazka, J. McCandless, A. Crespo, K. Leedy, G. H. Jessen,
β-Ga2O3 MOSFETs for radio frequency operation, IEEE Electron Device Lett. 38
(2017) 790, https://doi.org/10.1109/LED.2017.2694805.
142. J. Zhang, C. Xia, Q. Deng, W. Xu, H. Shi, F. Wu, J. Xu, Growth and
characterization of new transparent conductive oxides single crystals β-Ga2O3: Sn,
J. Phys. Chem. Solids 67 (2006) 1656, https://doi.org/10.1016/j.jpcs.2006.02.018.
143. N. Suzuki, S. Ohira, M. Tanaka, T. Sugawara, K. Nakajima, T.
Shishido, Fabrication and characterization of transparent conductive Sn-doped βGa2O3 single crystal, Phys. Status Solidi C 4 (2007) 2310,
https://doi.org/10.1002/pssc.200674884.
144. E. G. Vıllora, K. Shimamura, Y. Yoshikawa, T. Ujiie, K. Aoki,
Electrical conductivity and lattice expansion of β-Ga2O3 below room temperature,
Appl. Phys. Lett. 92 (2008) 202120, https://doi.org/10.1063/1.2910770.
145. A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, S.
Yamakoshi, High-quality β-Ga2O3 single crystals grown by edge-defined film-fed
growth, Jpn. J. Appl. Phys., Part 1 55, 1202A2 (2016),
https://doi.org/10.7567/JJAP.55.1202A2.
146. D. Gogova, G. Wagner, M. Baldini, M. Schmidbauer, K. Irmscher, R.
Schewski, Z. Galazka, Structural properties of Si-doped β-Ga2O3 layers grown by
MOVPE, J. Cryst. Growth 401 (2014) 665, https://doi.org/10.1016/
j.jcrysgro.2013.11.056.
147. S. Rafique, L. Han, A. T. Neal, S. Mou, M. J. Tadjer, R. H. French, H.
Zhao, Heteroepitaxy of n-type β-Ga2O3 thin films on sapphire substrate by low
pressure chemical vapor deposition, Appl. Phys. Lett. 109 (2016) 132103,
https://doi.org/10.1063/1.4963820.
148. M. Higashiwaki, K. Sasaki, K. Goto, K. Nomura, Q. T. Thieu, R.
Togashi, H. Murakami, Y. Kumagai, B. Monemar, A. Koukitu, A. Kuramata, S.
Yamakoshi, in 73rd Annual Device Research Conference (DRC), Columbus, Ohio,
21 June 2015, pp. 29-30.
149. M. Higashiwaki, K. Konishi, K. Sasaki, K. Goto, K. Nomura, Q. T.
Thieu, R. Togashi, H. Murakami, Y. Kumagai, B. Monemar, A. Koukitu, A.
Kuramata, S. Yamakoshi, Temperature-dependent capacitance-voltage and
current–voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes
fabricated on n-Ga2O3 drift layers grown by halide vapor phase epitaxy, Appl.
Phys. Lett. 108 (2016) 133503, https://doi.org/10.1063/1.4945267.
150. S. Krishnamoorthy, Z. Xia, S. Bajaj, M. Brenner, S. Rajan, Delta-doped
β-gallium oxide field-effect transistor, Appl. Phys. Express 10 (2017) 051102,
https://doi.org/10.7567/APEX.10.051102.
151. A. Parisini, R. Fornari, Analysis of the scattering mechanisms
controlling electron mobility in β-Ga2O3 crystals, Semicond. Sci. Technol. 31
(2016) 035023, https://doi.org/10.1088/0268-1242/31/3/035023.
152. T. Oishi, Y. Koga, K. Harada, M. Kasu, High-mobility β-Ga2O3 (201)
single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact, Appl. Phys. Express 8 (2015) 031101,
https://doi.org/10.7567/APEX.8.031101.
153. N. Ma, N. Tanen, A. Verma, Z. Guo, T. Luo, H. G. Xing, D. Jenna,
Intrinsic electron mobility limits in β-Ga2O3, Appl. Phys. Lett. 109 (2016) 212101,
https://doi.org/10.1063/1.4968550.
154. A. T. Neal, S. Mou, R. Lopez, J. V. Li, D. B. Thomson, K. D. Chabak,
G. H. Jessen, Incomplete ionization of a 110 meV unintentional donor in β-Ga2O3
and its effect on power devices, Sci. Rep. 7 (2017) 13218,
https://doi.org/10.1038/s41598-017-13656-x.
155. N. T. Son, K. Goto, K. Nomura, Q. T. Thieu, R. Togashi, H. Murakami,
Y. Kumagai, A. Kuramata, M. Higashiwaki, A. Koukitu, S. Yamakoshi, B.
Monemar, E. Janzen, Electronic properties of the residual donor in unintentionally
doped β-Ga2O3, J. Appl. Phys. 120 (2016) 235703,
https://doi.org/10.1063/1.4972040.
156. M. Higashiwaki, A. Kuramata, H. Murakami, Y. Kumagai, State-ofthe-art technologies of gallium oxide power devices, J. Phys. D 50 (2017) 333002,
https://doi.org/10.1088/1361-6463/aa7aff.
157. N. Moser, J. McCandless, A. Crespo, K. Leedy, A. Green, A. Neal, S.
Mou, E. Ahmadi, J. Speck, K. Chabak, N. Peixoto, G. Jessen, Ge-Doped β-Ga2O3
MOSFETs, IEEE Electron Device Lett. 38 (6) (2017) 775, https://doi.org/10.1109/
LED.2017.2697359.
158. T. Onuma, S. Fujioka, T. Yamaguchi, M. Higashiwaki, K. Sasaki, T.
Masui, T. Honda, Correlation between blue luminescence intensity and resistivity
in β-Ga2O3 single crystals, Appl. Phys. Lett. 103 (2013) 041910,
https://doi.org/10.1063/1.4816759.
159. T. Harwig, J. Schoonman, Electrical properties of β-Ga2O3 single
crystals. II, J. Solid State Chem. 23, (1978) 205, https://doi.org/10.1016/0022-
4596(78)90066-X.
160. C. Tang, J. Sun, N. Lin, Z. Jia, W. Mu, X. Tao, X. Zhao, Electronic
structure and optical property of metal-doped Ga2O3: a first principles study, RSC
Adv. 6 (2016) 78322, https://doi.org/10.1039/C6RA14010F.
161. H. He, W. Li, H. Z. Xing, E. J. Liang, First Principles Study on the
Electronic Properties of Cr, Fe, Mn and Ni Doped β-Ga2O3, Adv. Mater. Res. 535-
537 (2012) 36, https://doi.org/10.4028/www.scientific.net/AMR.535-537.36.
162. Hongchao Zhai, Zhengyuan Wu, Zhilai Fang Recent progress of
Ga2O3-based gas sensors, Ceramics International 48 (17) (2022) 24213-24233,
https://doi.org/10.1016/ j.ceramint.2022.06.066.
163. M. Fleischer, H. Meixner, Gallium oxide thin films: a new material for
high-temperature oxygen sensors, Sensors and аctuutom B, 4 (1991) 437,
https://doi.org/ 10.1016/0925-4005(91)80148-D.
164. M. Fleischer, H. Meixner, Sensing reducing gases at high temperatures
using long-term stable Ga2O3 thin films. Sens. Actuators B Chem. 6 (1992) 257-
261, https://doi.org/10.1016/0925-4005(92)80065-6.
165. A. Many, Y. Goldstein, N. B. Grover, Semconductor Surfaces, North
Hollad, Amsterdam,1965, 512 pp., https://doi.org/10.1016/0039-6028(66)90011-2.
166. S. R. Morrison, Experimental Methods, In: The chemical physics of
surfaces. Springer, Boston, MA (1977) https://doi.org/10.1007/978-1-4615-8007-
2_3.
167. P. Kofstad, Diffusion, and electrical conductivity in binary metal
oxides, Nonstoichiometry, Wiley, New York, 1983.
168. M. Fleischer, H. Meixner Gallium oxide thin films: a new material for
high-temperature oxygen sensors, Sens. Actuators B: Chem., 4 (1991), 437-441,
https://doi.org/10.1016/0925-4005(91)80148-D.
169. U. Lampe, M. Fleischer, H. Meixner Lambda measurement with Ga2O3,
Sens. Actuators B: Chem, 17 (1994) 187-196, https://doi.org/10.1016/0925-
4005(93)00880-8.
170. A. Afzal, β-Ga2O3 nanowires and thin films for metal oxide
semiconductor gas sensors: sensing mechanisms and performance enhancement strategies, Journal of Materiomics 5 (4) (2019) 542-557,
https://doi.org/10.1016/j.jmat.2019.08.003.
171. X. D. Wang, C. J. Summers, Z. L. Wang, Large-Scale HexagonalPatterned Growth of Aligned ZnO Nanorods for Nano-optoelectronics and
Nanosensor Arrays, Nano Lett. 4 (2004) 423-426,
https://doi.org/10.1021/nl035102c.
172. K. Girija, S. Thirumalairajan, V. R. Mterlaro, D. Mangalaraj, Catalyst
Free Vapor-Solid Deposition of Morphologically Different β-Ga2O3 nanostructure
thin films for selective CO gas sensor at low temperature, Anal. Methods 8 (2016)
3224-3235, https://doi.org/10.1039/c6ay00391e.
173. H. Kim, C. Jin, S. An, C. Lee, Fabrication and CO gas-sensing
properties of Pt-functionalized Ga2O3 nanowires, Ceramics International 38 (2012)
3563–3567 https://doi.org/10.1016/j.ceramint.2011.12.072.
174. F. Wang, Z. Han, L. Tong, Fabrication and characterization of β-Ga2O3
optical nanowires, Physica E 30 (2005) 150,
https://doi.org/10.1016/j.physe.2005.08.001.
175. H. J. Chun, Y. S. Choi, S. Y. Bae, H. W. Seo, S. J. Hong, S. Park, H.
Yang, Controlled structure of gallium oxide nanowires, J. Phys. Chem. B 107
(2003) 9042, https://doi.org/10.1021/jp034728o.
176. P. Guha, S. Chakrabarti, S. Chaudhuri, Synthesis of β-Ga2O3 nanowire
from elemental Ga metal and its photoluminescence study, Physica E 23 (2004) 81,
https://doi.org/10.1016/j.physe.2004.01.003.
177. N. D. Cuong, Y. W. Park, S. G. Yoon, Microstructural and electrical
properties of Ga2O3 nanowires grown at various temperatures by vapor–liquid–
solid technique Sensors and Actuators B: Chemical 140 (1) (2009) 240-244,
https://doi.org/ 10.1016/j.snb.2009.04.020.
178. Z . Liu, T . Yamazaki, Y . Shen, Т. Kikuta, N . Nakatani, Y. Li, O2 and
CO sensing of Ga2O3 multiple nanowire gas sensors, Sens. Actuators B: Chem.
129 (2008) 666-670, https://doi.org/10.1016/j.snb.2007.09.055.
179. R. Pilliadugula, N. G. Krishnan, Effect of pH dependent morphology on
room temperature NH3 sensing performances of β-Ga2O3, Mater. Sci. Semicond.
Process. 112 (2020) 105007, https://doi.org/10.1016/j.mssp.2020.105007.
180. J . Zhu, Z. Xu, S. Ha, D. Li, K . Zhang, H . Zhang, J. Feng, Gallium
oxide for gas sensor applications: a comprehensive review, Materials. 15 (20)
(2022) 7339, https://doi.org/10.3390/ma15207339.
181. W. Ang, W. Zhao, P.L. Hua, L.W. Wei, X. Li, D.X. Chen, H. Wei,
Room-temperature NH3 gas sensor based on hydrothermally grown ZnO nanorods,
Chin. Phys. Lett. 28 (2011) 080702, https://doi.org/10.1088/0256-
307X/28/8/080702.
182. M. Stankova, X. Vilanova, J. Calderer, E. Liobet, J. Brezmes, I. Gracia,
C. Cane, X. Correig, Sensitivity and selectivity improvement of RF sputtered WO3
microphotoplate gas sensors, Sens. Actuators B: Chem. 113 (2006) 241-248,
https://doi.org/10.1016/j.snb.2005.02.056.
183. R. Pandeeswari, B.G. Jeyaprakash, High sensing response of β-Ga2O3
thin film towards ammonia vapours: influencing factors at room temperature, Sens.
Actuators: B Chem. 195 (2014) 206-214,
https://doi.org/10.1016/j.snb.2014.01.025.
184. H.-J. Lin, J. P. Baltrus, H. Gao, Y. Ding, C.-Y. Nam, P. Ohodnicki, PuX. Gao, Perovskite nanoparticle-sensitized Ga2O3 nanorod arrays for CO detection
at high temperature, ACS Appl. Mater. Interfaces 8 (14) (2016) 8880-8887,
https://doi.org/10.1021/acsami.6b01709.
185. G. Kiss, O. H. Krafcsik, K. Kovacs, V.K. Josepovits, M. Fleischer, H.
Meixner, P. Deák, F. Réti, Impedance spectroscopic and secondary ion mass
spectrometric studies of β-Ga2O3/O2 interaction. Thin Solid Films 391 (2) (2001)
239-242, https://doi.org/10.1016/S0040-6090(01)00988-9.
186. C. Y. Wang, R. W. Becker, T. Passow, W. Pletschen, K. Köhler, V.
Cimalla, O. Ambacher, Photon stimulated sensor based on indium oxide
nanoparticles I: Wide-concentration-range ozone monitoring in air, Sensor.
Actuat.: B Chem. 152 (2011) 235-240, https://doi.org/10.1016/j.snb.2010.12.014.
187. M. Panayotova, V. Panayotov, T. Oliinyk, Gallium and indium
nanomaterials for environmental protection, E3S Web of Conferences 166 (2020)
01008, https://doi.org/10.1051/e3sconf/202016601008.
188. K. Schwarz, Р. Blaha, DFT calculations of solids in the ground state,
Structures on Different Time Scales: Published by De Gruyter 2018,
https://doi.org/10.1515/9783110433920-003.
189. M. Levy, Electron densities in search of Hamiltonians, Phys. Rev. A,
26 (1982) 1200-1208, https://doi.org/10.1103/PhysRevA.26.1200.
190. E. H. Lieb, Density functionals for Coulomb systems, Int. J. Quant.
Chem., 24 (1983) 243-277, https://doi.org/10.1002/qua.560240302.
191. A. D. Becke, Perspective: fifty years of density-functional theory in
chemical physics, J. Chem. Phys. 140 (2014) 18A301,
https://doi.org/10.1063/1.4869598.
192. K. Lejaeghere, G. Bihlmayer, T. Björkman, P. Blaha, S. Blügel, V.
Blum, D. Caliste, I. E. Castelli, S. J. Clark, A. Dal Corso, S. de Gironcoli, T.
Deutsch, J. K. Dewhurst, I. Di Marco, C. Draxl, M. Dułak, O. Eriksson, J. A.
Flores-Livas, K. F. Garrity, L. Genovese, P. Giannozzi, M. Giantomassi, S.
Goedecker, X. Gonze, O. Grånäs, E. K. U. Gross, A. Gulans, F. Gygi, D. R.
Hamann, P. J. Hasnip, N. A. W. Holzwarth, D. Iuşan, D. B. Jochym, F. Jollet, D.
Jones, G. Kresse, K. Koepernik, E. Küçükbenli, Y. O. Kvashnin, I. L. M. Locht, S.
Lubeck, M. Marsman, N. Marzari, U. Nitzsche, L. Nordström, T. Ozaki, L.
Paulatto, C. J. Pickard, W. Poelmans, M. I. J. Probert, K. Refson, M. Richter, G.-
M. Rignanese, S. Saha, M. Scheffler, M. Schlipf, K. Schwarz, S. Sharma, F.
Tavazza, P. Thunström, A. Tkatchenko, M. Torrent, D. Vanderbilt, M. van Setten,
V. Van Speybroeck, J.M. Wills, J. R. Yates, G.-X. Zhang, Reproducibility in
density-functional theory calculations of solids, Science 351 (2016) aad3000,
https://doi.org/10.1126/science.aad3000.
193. O. H. Shklovskyi, A. V. Berehovyi, Teoriia funktsionalu elektronnoi
shchilnosti dlia atomiv ta prostykh molekul: monohrafiia, Bielhorod: VD
“Bilhorod” NDU “BielDU” (2014) 188 s.
194. D. M. Ceperley, B. J. Alder, Ground state of the electron gas by a
stochastic method, Phys. Rev. Lett. 45 (1980) 566-569, https://doi.org/10.1103/
PhysRevLett.45.566.
195. J. P. Perdew, S. Kurth, A. Zupan, P. Blaha. Accurate density functional
with correct formal properties: a step beyond the generalized gradient
approximation, Phys. Rev. Lett. 82 (1999) 2544-2547,
https://doi.org/10.1103/PhysRevLett.82.2544.
196. F. Tran, J. Stelzl, P. Blaha, Rungs 1 to 4 of DFT Jacob’s ladder:
extensive test on the lattice constant, bulk modulus, and cohesive energy of solids,
J. Chem. Phys., 144 (2016) 204120, https://doi.org/10.1063/1.4948636.
197. J. Sun, A. Ruzsinszky, J. P. Perdew, Strongly constrained and
appropriately normed semilocal density functional, Phys. Rev. Lett. 115 (2015)
036402, https://doi.org/10.1103/PhysRevLett.115.036402.
198. J. Tao, Y. Mo, Accurate semilocal density functional for condensedmatter physics and quantum chemistry, Phys. Rev. Lett. 117 (2016) 073001,
https://doi.org/10.1103/PhysRevLett.117.073001.
199. J. P. Perdew, M. Ernzerhof, K. Burke, Rationale for mixing exact
exchange with density functional approximations, J. Chem. Phys., 105 (22) (1996)
9982, https://doi.org/10.1063/1.472933.
200. V. I. Anisimov, I. V. Solovyev, M. T. Czyz̀yk M. A. Korotin, G. A.
Sawatzky, Density-functional theory and NiO photoemission spectra, Phys. Rev. B
48 (1993) 16929-16934, https://doi.org/10.1103/PhysRevB.48.16929.
201. S. Grimme, A. Hansen, J. G. Brandenburg, C. Bannwarth, Dispersioncorrected mean-field electronic structure methods, Chem. Rev. 116 (2016) 5105-
5154, https://doi.org/10.1021/acs.chemrev.5b00533.
202. F. Mittendorfer, A. Garhofer, J. Redinger, J. Klimes, J. Harl, G. Kresse,
Graphene on Ni(111): strong interaction and weak adsorption, Phys. Rev. B 84
(2011) 201401, https://doi.org/10.1103/PhysRevB.84.201401.
203. F. Tran, P. Blaha, K. Schwarz, How close are the Slater and Becke–
Roussel potentials in solids? J. Chem. Theory Comput. 11 (2015) 4717-4726,
https://doi.org/10.1021/acs.jctc.5b00675.
204. M. Hybertsen, S. Louie, Self-energy approach to quasiparticle energies
using a density functional treatment of dielectric screening, Adv. Quantum Chem.
21 (1990) 155-174, https://doi.org/10.1016/S0065-3276(08)60596-1.
205. F. Tran, P. Blaha, Accurate band gaps of semiconductors and insulators
with a semilocal exchange-correlation potential, Phys. Rev. Lett. 102 (2009)
226401, https://doi.org/10.1103/PhysRevLett.102.226401.
206. D. Koller, F. Tran, P. Blaha, Merits and limits of the modified Becke–
Johnson exchange potential, Phys. Rev. B 83 (2011)195134, https://doi.org/
10.1103/PhysRevB.83.195134.
207. T. Koopmans, Über die Zuordnung von Wellenfunktionen und
Eigenwerten zu den einzelnen Elektronen eines Atoms, Physics 1 (1934) 104-113,
https://doi.org/10.1016/S0031-8914(34)90011-2.
208. J. F. Janak. Proof that 𝜕E/𝜕ni = ϵ in density-functional theory, Phys.
Rev. B 18 (1978) 7165-7168, https://doi.org/10.1103/PhysRevB.18.7165.
209. J. C. Slater, The self-consistent field for crystals, Int. J. Quant. Chem. 3
(1970) 727, https://doi.org/10.1002/qua.560040737.
210. K. Schwarz, On Slater’s transition state concept for ionization energies,
Chem. Phys. 7 (1975) 100–107, https://doi.org/10.1016/0301-0104(75)85029-4.
211. J. P. Perdew, R. G. Parr, M. Levy, J. L. Balduz, Density-functional
theory for fractional particle number: derivative discontinuities of the energy,
Phys. Rev. Lett. 49 (1982) 1691-1695, https://doi.org/10.1103/
PhysRevLett.49.1691.
212. N. Hadjisavvas, A. Theophilou, Rigorous formulation of Slater’s
transition-state theory for excited states, Phys. Rev. A 32 (1985) 720-724,
https://doi.org/10.1103/physreva.32.720.
213. J. C. Slater, J. B. Mann, T. M. Wilson, J. H. Wood. Nonintegral
occupation numbers in transition atoms in crystals, Phys. Rev. 184 (1969) 672-
694, https://doi.org/10.1103/PhysRev.184.672.
214. E. Kabliman, P. Blaha, K. Schwarz, Ab initio study of stabilization of
the misfit layer compound (PbS)1.14TaS2, Phys. Rev. B 82 (2010) 125308,
https://doi.org/10.1103/PhysRevB.82.125308.
215. P. Mori-Sànchez, A. J. Cohen, W. Yang, Many-electron self-interaction
error in approximate density functionals, J. Chem. Phys. 125 (2006) 201102,
https://doi.org/10.1063/1.2403848.
219. K. Held, Electronic structure calculations using dynamical mean field
theory, Adv. Phys. 65 (2007) 829-926, https://doi.org/10.1080/
00018730701619647.
220. S. Cottenier, Density Functional Theory and the family of (L)APWMethods: A Step-by-Step Introduction. Wiley VCH, New York, 2002-2013. Freely
available at http://www.wien2k.at/reguser/textbooks.
221. G. H. K. Madsen, P. Blaha, K. Schwarz, L. Nordström, E. Sjöstedt,
Efficient linearization of the augmented plane-wave method, Phys. Rev. B 64
(2001) 195134, https://doi.org/10.1103/PhysRevB.64.195134.
222. D. Singh, L. Nordström, Plane Waves, Pseudopotentials and the LAPW
Method. Springer, New York, 2006.
223. K. Schwarz, Electrons, In A. Authier (Ed.), International Tables for
Crystallography, Volume D, Physical Properties of Crystals, pages 294-313,
Kluwer Academic Publ., Dordrecht, 2003.
224. V. N. Strocov, M. Shi, M. Kobayashi, C. Monney, X. Wang, J.
Krempasky, T. Schmitt, L. Patthey, H. Berger, P. Blaha, Three-dimensional
electron realm in VSe2 by soft-x-ray photoelectron spectroscopy: origin of chargedensity waves, Phys. Rev. Lett. 109 (2012) 086401, https://doi.org/10.1103/
PhysRevLett.109.086401.
225. Y. Kim, M. Marsman, G. Kresse, F. Tran, P. Blaha, Towards efficient
band structure and effective mass calculations for III-V direct band-gap semiconductors, Phys. Rev. B 82 (2010) 205212,
https://doi.org/10.1103/PhysRevB.82.205212.
226. Чернікова О. М. Моделі активації ковалентного зв’язування в
реакціях окислення наноструктурними каталізаторами: дис. ... канд. фіз.-мат.
наук: 01.04.07. Київ, 2016. 134 с.
227. Кравцова Д. Ю. Електронна структура та фізико-хімічні
властивості мета- і наноматеріалів каталізаторами: дис. ... канд. фіз.-мат.
наук: 01.04.07. Одеса, 2018. 131 с.
228. Здещиц А. В. Електронні властивості гібридних наноструктур: дис.
... канд. фіз.-мат. наук: 01.04.07. Одеса, 2019. 140 с.
229. Соломенко А. Г. Функціоналізація двовимірних
напівпровідникових матеріалів: дис. ... канд. фіз.-мат. наук: 01.04.07. Одеса,
2020. 107 с.
230. Прихожа Ю. О. Матеріали для анодів літій-іонних акумуляторів
матеріалів: дис. ... докт. філ. зі спец. 104: Фізика та астрономія. Кривий Ріг,
2021. 112 с.
231. Балабай Р. М. Особливості розподілу електронної густини в
нанорозмірних функціональних матеріалах: дис. ... док. фіз.-мат. наук:
01.04.07. Київ, 2014. 278 с.
232. Мерзликін П. В. Функціональні твердотільні наноструктури: дис.
... канд. фіз.-мат. наук: 01.04.07. Одеса, 2012. 124 с.
233. Балабай Р. М. Обчислювальні методи із перших принципів у
фізиці твердого тіла: квантово-механічна молекулярна динаміка: монографія.
Кривий Ріг: Видавничий дім (2009) 124 с.
235. K. D. Chabak, K. D. Leedy, A. J. Green1 S. Mou, A. T. Neal, T. Asel,
E. R. Heller, N. S. Hendricks1, K. Liddy, A. Crespo, Lateral β-Ga2O3 field effect
transistors, Semicond. Sci. Technol. 35 (2020) 013002, https://doi.org/10.1088/
1361-6641/ab55fe.
236. М. Higashiwaki, К. Sasaki, Н. Murakami, Y. Kumagai, А. Koukitu, А.
Kuramata, Т. Masui, S. Yamakosh, Recent progress in Ga2O3 power devices, Semicond. Sci. Technol. 31 (2016) 034001, https://doi.org/10.1088/0268-
1242/31/3/034001.
237. М. Higashiwaki, Н. Murakami, Y. Kumagai, А. Kuramata, Current
status of Ga2O3 power devices, Jpn. J. Appl. Phys. 55 (11) (2016) 1202A1,
https://doi.org/10.7567/JJAP.55.1202A1.
238. Н. Higashiwaki, А. Kuramata, Н. Murakami, Y. Kumagai, State-oftheart technologies of gallium oxide power devices, J. Phys. D Appl. Phys. 50
(2017) 333002, https://doi.org/10.1088/1361-6463/aa7aff.
239. M. A. Mastro, A. Kuramata, J. Calkins, J. Kim, F. Ren, S. J. Pearton,
Opportunities and future directions for Ga2O3, ECS J. Solid State Sci. Technol. 6
(2017) P356-P359, https://doi.org/10.1149/2.0031707jss.
240. H. Peelaers, C. G. Van de Walle, Brillouin zone and band structure of
β-Ga2O3, Phys. Stat. Solidi B252 (2015) 828-832, https://doi.org/
10.1002/pssb.201451551.
241. M. P. Shaskolska Krystalohrafiia, M.: Vyshcha shk. (1976) 459 s.
242. N. Henry, K. Lonsdale, International tables for X-ray crystallography /
N. Henry, K. Lonsdale Symmetry Groups The Kynoch Press, Birmingham, 1999;
Vol. 1, p. 372.
243. International tables for X-ray diffraction, A, Dordrecht-Boston (1983)
244. E. G. Villora, K. Shimamura, Y. Yoshikawa, K. Aoki, N. Ichinose.
Large-size β-Ga2O3 single crystals and wafers, J. Cryst. Growth 270 (2004) 420,
https://doi.org/10.1016/j.jcrysgro.2004.06.027.
245. K. Adachi, H. Ogi, N. Takeuchi, N. Nakamura, H. Watanabe, T. Ito, Y.
Ozaki, Unusual elasticity of monoclinic β-Ga2O3, Appl. Phys. 124 (2018) 085102,
https://doi.org/10.1063/1.5047017.
246. J. Su, R. Guo, Z. Lin, S. Zhang, J. Zhang, J. Chang, Y. Hao, Unusual
electronic and optical properties of two-dimensional Ga2O3 predicted by density
functional theory, J. Phys. Chem. C122 (2018) 24592, https://doi.org/10.1021/
acs.jpcc.8b08650.
247. J. Li, L. An, C. Lu, J. Liu, Conversion between hexagonal GaN and βGa2O3 nanowires and their electrical transport properties, Nano Lett.6 (2006) 148,
https://doi.org/10.1021/nl051265k.
248. P. Jiang, X. Qian, X. Li, R. Yang, Three-dimensional ani-sotropic
thermal conductivity tensor of single crystalline β-Ga2O3, Appl. Phys. Lett. 113
(2018) 232105, https://doi.org/10.1063/1.5054573.
249. J. Su, J. Zhang, R. Guo, Z. Lin, M. Liu, J. Zhang, J. Chang, Y. Hao,
Mechanical and thermodynamic properties of two-dimensional monoclinic Ga2O3,
Materials and Design 184 (2019) 108197, https://doi.org/10.1016/
j.matdes.2019.108197.
250. K.-W. Ang, K.-J. Chui, V. Bliznetsov, C.-H. Tung, A. Du,N.
Balasubramanian, G. Samudra, M. F. Li, Y.-C. Yeo, Lattice strain analysis of
transistor structures with silicon-germanium and silicon-carbon source/drain
stressors, Appl. Phys. Lett. 86 (2005) 093102, https://doi.org/10.1063/1.1871351.
251. E. Chikoidze, D. J. Rogers, F. H. Teherani, C. Rubio, G. Sauthier, H. J.
Von Bardeleben, T. Tchelidze, C. Ton-That, A. Fellous, P. Bove, E. V. Sandana,
Y. Dumont, A. Perez-Tomas, Puzzling robust 2D metallic conductivity in undoped
β-Ga2O3 thin films, Mater. Today Phys. 8 (2019) 10, https://doi.org/10.1016/
j.mtphys.2018.11.006.
252. S. Luan, L. Dong, R. Jia, Analysis of the structural, anisotropic elastic
and electronic properties of β-Ga2O3 withvarious pressures, J. Cryst. Growth 505
(2019) 74, https://doi.org/10.1016/j.jcrysgro.2018.09.031.
253. H. He, M. A. Blanco, R. Pandey, Electronic and thermo-dynamic
properties of β-Ga2O3, Appl. Phys. Lett. 88 (2006) 261904,
https://doi.org/10.1063/1.2218046.
254. R. Ahrling, J. Boy, M. Handwerg, O. Chiatti, R. Mitdank, G. Wagner,
Z. Galazka, S. F. Fischer, Transport properties and finite size effects in β-Ga2O3
thin films, ScientificReports 9 (2019) 13149, https://doi.org/10.1038/ s41598-019-
49238-2.
255. R. Balabai, A. Solomenko, Flexible 2D layered material junctions,
Appl. Nanosc. 9 (2019) 1011, https://doi.org/10.1007/s13204-018-0709-9.
256. X.-Q. Zheng, J. Lee, S. Rafique, L. Han, C. A. Zorman, H. Zhao, Ph.
X.-L. Feng, Free-standing β-Ga2O3 thin diaphragms, Electronic Materials 47 (2)
(2018) 973, https://doi.org/10.1007/s11664-017-5978-7.
257. R. Balabai, D. Kravtsova, Hardness of diamond-cBN nanocomposite,
Diamond and Related Materials 82 (2018) 56, https://doi.org/10.1016/
j.diamond.2017.12.016.
258. D. Kwak, Y. Lei, R. Maric, Ammonia gas sensors: а comprehensive
review, Talanta, 204 (2019) 713, https://doi.org/10.1016/j.talanta.2019.06.034.
259. T. Waitz, T. Wagner, C.-D. Kohl, M. Tiemann, New mesoporous metal
oxides as gas sensors, Stud. Surf. Sci. Catal. 174 (2008) 401,
https://doi.org/10.1016/S0167-2991(08)80227-3.
260. C. Wang, L. Yin, L. Zhang, D. Xiang, R. Gao, Metal oxide gas sensors:
sensitivity and influencing factors, Sensors, 10 (2010) 2088,
https://doi.org/10.3390/s100302088.
261. G. F. Fine, L. M. Cavanagh, A. Afonja, Metal Oxide Semi-Conductor
Gas Sensors in Environmental Monitoring, R. Binions, Sensors, 10 (2010) 5469,
https://doi.org/10.3390/s100605469.
262. A. Afzal, N. Cioffi, L. Sabbatini, L. Torsi, NOx sensors based on
semiconducting metal oxide nanostructures: Progress and perspectives, Sens.
Actuators B: Chemical, 171-172 (2012) 25, https://doi.org/10.1016/
j.snb.2012.05.026.
263. Gas sensing Fundamentals (Eds. C.-D. Kohl and T. Wagner) (BerlinHeidelberg: Springer-Verlag: 2014).
264. A. Mirzaeі, G. Neri, Microwave-assisted synthesis of metal oxide
nanostructures for gas sensing application: а review, Sens Actuators B: Chemical,
237 (2016) 749, https://doi.org/10.1016/j.snb.2016.06.114.
265. A. Mirzaei, S. G. Leonardi, G. Neri, Detection of hazardous volatile
organic compounds (VOCs) by metal oxide nanostructures-based gas sensors: A review, Ceram. Int., 42 (2016) 15119, https://doi.org/10.1016/
j.ceramint.2016.06.145.
266. P. T. Moseley, Progress in the development of semiconducting metal
oxide gas sensors: a review, Meas. Sci Technol., 28 (2017) 082001, https://doi.org/
10.1088/1361-6501/aa7443.
267. G. Korotcenkov, B. K. Cho, Metal oxide composites in conductometric
gas sensors: аchievements and challenges, Sens. Actuators B: Chemical, 244
(2017) 182, https://doi.org/10.1016/j.snb.2016.12.117.
268. J. Zhang, Z. Qin, D. Zeng, C. Xie, Metal-oxide-semiconductor based
gas sensors: screening, preparation, and integration, Phys. Chem. Chem. Phys., 19:
6313 (2017); https://doi.org/10.1039/C6CP07799D.
269. X. Gao, T. Zhang, An overview: facet-dependent metal oxide
semiconductor gas sensors, Sens. Actuators B: Chemical, 277 (2018) 604,
https://doi.org/10.1016/j.snb.2018.08.129.
270. E. Llobet, E. Navarrete, F. E. Annanouch, M. Alvarado, E. González, J.
L. Ramírez, A. Romero, X. Vilanova, M. Domínguez-Pumar, S. Vallejos, and I.
Grácia, 2018 IEEE Sens. 1 (2018) 8589734, https://doi.org/10.1109/ICSENS.
271. A. Dey, Semiconductor metal oxide gas sensors: а review, Mater. Sci
Eng. B, 229 (2018) 206, https://doi.org/10.1016/j.mseb.2017.12.036.
272. A. Oprea, D. Degler, N. Barsan, A. Hemeryck, J. Rebholz, Gas sensors
based on conducting metal oxides: basic understanding, Technology and
Applications (Eds. N. Barsan and K. Schierbaum) (Elsevier: 2019), Ch. 3, p. 61-
165, https://doi.org/10.1016/B978-0-12-811224-3.00003-2.
273. Z. Li, H. Li, Z. Wu, M. Wang, J. Luo, H. Torun, P. Hu, C. Yang, M.
Grundmann, X. Liud, Y. Fu, Advances in designs and mechanisms of
semiconducting metal oxide nanostructures for high-precision gas sensors operated
at room temperature, Mater. Horiz., 6 (2019) 470,
https://doi.org/10.1039/C8MH01365A.
274. T. Schwebel, M. Fleischer, H. Meixner, A selective, temperature
compensated O2 sensor based on Ga2O3 thin films, Sens. Actuators B: Chemical,
65, Iss. 1–3: 176 (2000); https://doi.org/10.1016/S0925-4005(99)00326-3.
275. M. Ogita, K. Higo, Y. Nakanishi, Y. Hatanaka, Ga2O3 thin film for
oxygen sensor at high temperature, Appl. Surf. Sci., 175-176 (2001) 721,
https://doi.org/10.1016/S0169-4332(01)00080-0.
276. M. Fleischer, J. Giber, H. Meixner, H2-induced changes in electrical
conductance of β-Ga2O3 thin-film systems, Appl. Phys. A 54 (1992) 560,
https://doi.org/10.1007/BF00324340.
277. T. Schwebel, M. Fleischer, H. Meixner, C. D. Kohl, CO-Sensor for
domestic use based on high temperature stable Ga2O3 thin films, Sens. Actuators
B: Chemical, 49, Iss. 1–2: 46 (1998); https://doi.org/10.1016/S0925-
4005(97)00334-1.
278. Q. Bui, L. Largeau, N. Jegenyes, O. Mauguin, L. Travers, X. Lafosse,
C. Dupuis, J.-C. Harmand, M. Tchernycheva, N. Gogneau, GaN/Ga2O3 core/shell
nanowires growth: nanostructures for future CO-sensors developments, Appl. Sci.,
9 (2019) 3528, https://doi.org/10.20944/preprints201907.0049.v1.
279. A. Kolmakov, Y. Zhang, G. Cheng, M. Moskovits, Detection of CO
and O2 using tin oxide nanowire sensors, Adv. Mater. 15 (2003) 997,
https://doi.org/ 10.1002/adma.200304889.
280. E. Comini, G. Faglia, G. Sberveglieri, Z. W. Pan, Z. L. Wang, Stable
and highly sensitive gas sensors based on semiconducting oxide nanobelts, Appl.
Phys. Lett. 81 (2002) 1869, https://doi.org/10.1063/1.1504867.
281. Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, C. L. Lin,
Erratum: “Shortest intersubband transition wavelength (1.68 μm) achieved in
AlN/GaN multiple quantum wells by metalorganic vapor phase epitaxy”, Appl.
Phys. Lett., 84 (2004) 3654, https://doi.org/10.1063/1.1748852.
282. A. Ponzoni, E. Comini, G. Sberveglieri, J. Zhou, S. Deng, N. Xu, Y.
Ding, Z. Wang, Ultrasensitive and highly selective gas sensors using three-dimensional tungsten oxide nanowire networks, Appl. Phys. Lett., 88 (2006) 20,
https://doi.org/10.1063/1.2203932.
283. C. S. Rout, A. Govindaraj, C. N. R. Rao, High-sensitivity hydrocarbon
sensors based on tungsten oxide nanowires, J. Mater. Chem., 16 (2006) 3936,
https://doi.org/10.1039/B607012B.
284. D. H. Zhang, Z. Q. Liu, C. Li, T. Tang, X. L. Liu, S. Han, B. Lei, C. W.
Zhou, Detection of NO2 down to ppb Levels Using Individual and Multiple In2O3
Nanowire Devices, Nano Lett. 4 (2004) 1919, https://doi.org/10.1021/nl0489283.
285. H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D.
P. Yu, Y. Ding, Q. L. Huang, S. Q. Feng, Ga2O3 nanowires prepared by physical
evaporation, Solid State Commun., 109 (1999) 677, https://doi.org/10.1016/S0038-
1098(99)00015-0.
286. X. C. Wu, W. H. Song, W. D. Huang, M. H. Pu, B. Zhao, Y. P. Sun, J.
J. Du, Crystalline gallium oxide nanowires: intensive blue light emitters, Chem.
Phys. Lett. 328 (2000) 5, https://doi.org/10.1016/S0009-2614(00)00899-X.
287. P. Feng, X. Y. Xie, Y. G. Liu, Q. Wan, T. H. Wang, Achieving fast
oxygen response in individual β-Ga2O3 nanowires by ultraviolet illumination,
Appl. Phys. Lett., 89 (2006) 112114, https://doi.org/10.1063/1.2349278.
288. Z. Liu, T. Yamazaki, Y. Shen, T. Kikuta, N. Nakatani, and Y. Li, Sens.
Actuators B: Chemical, 129, Iss. 2 (2008) 666, https://doi.org/10.1016/
j.snb.2007.09.055.
289. Z. F. Liu, T. Yamazaki, Y. B. Shen, T. Kikuta, N. Nakatani, T.
Kawabata, Room temperature gas sensing of 𝑝-type TeO2 nanowires, Appl. Phys.
Lett. 90 (2007) 173119, https://doi.org/10.1063/1.2732818.
290. T. Zhang, J. Lin, X. Zhang, Y. Huang, X. Xu, Y. Xue, J. Zou, C. Tang,
Single-crystalline spherical β-Ga2O3 particles: Synthesis, N-doping and
photoluminescence properties, J. of Lumin. 140 (2013) 30, https://doi.org/
10.1016/j.jlumin.2013.02.031.
291. M. Razeghi, R. McClintock, D. Pavlidis, F. H. Teherani, A review of
the growth, doping & applications of β-Ga2O3 thin films, In: Rogers D. J., Look D.
C., Teherani F. H., editors, Oxide-based Materials and Devices IX, Proc. of SPIE
(2018) 10533, https://doi.org/10.1117/12.2302471.
292. S. Ren, J. Ma, H. Zhao, X. Fu, The effort of finding a p-type β-Ga2O3 -
a review of theoretical and experimental research Proceedings, Seventh
Symposium on Novel Photoelectronic Detection Technology and Applications
(2021) 117631Y, https://doi.org/10.1117/12.2586313.
293. B. E. Kananen, L. E. Halliburton, E. M. Scherrer, K. T. Stevens, G. K.
Foundos, K. B. Chang, N. C. Giles, Electron paramagnetic resonance study of
neutral Mg acceptors in β-Ga2O3 crystals, Appl. Phys. Lett. 111 (7) (2017) 072102,
https://doi.org/10.1063/1.4990454.
294. A. Luchechko, V. Vasyltsiv, L. Kostyk, O. Tsvetkova, A.I. Popov,
Shallow and deep trap levels in X-ray irradiated β-Ga2O3: Mg Nucl. Inst. Methods
Phys. Res. B 441 (2019) 12-17, https://doi.org/10.1016/j.nimb.2018.12.045.
295. J. R. Ritter, J. Huso, P. T. Dickens, J. B. Varley, K. G. Lynn, M. D.
McCluskey, Compensation and hydrogen passivation of magnesium acceptors in
β-Ga2O3, Appl. Phys. Let., 113 (5) (2018) 052101,
https://doi.org/10.1063/1.5044627.
296. J. L. Lyons, A survey of acceptor dopants for β-Ga2O3 Semicond, Sci.
Technol. 33 (5) (2018) 05LT02, https://doi.org/10.1088/1361-6641/aaba98.
297. C. H. Park, S. B. Zhang, S.-H. Wei, Origin of p-type doping difficulty
in ZnO: the impurity perspective, Phys Rev B 66 (2002) 073202,
https://doi.org/10.1103/PhysRevB.66.073202.
298. L. Liu, M. Li, D. Yu, J. Zhang, H. Zhang, C. Qian, Z. Yang,
Fabrication and characteristics of N-doped β-Ga2O3 nanowires, Appl. Phys. A 98
(4) (2010) 831-835, https://doi.org/10.1007/s00339-009-5538-y.
299. E. Chikoidze, A. Fellous, A. Perez-Tomas, G. Sauthier, T. Tchelidze,
C. Ton-That, T. T. Huynh, M. Phillips, S. Russell, M. Jennings, B. Berini, F.
Jomard, Y. Dumont, P-type β-gallium oxide: a new perspective for power and
optoelectronic devices, Mater. Today Phys. 3 (2017) 118-126,
https://doi.org/10.1016/ j.mtphys.2017.10.002.
300. R. Balabai, V. Zdeschits, M. Naumenko, Mechanical modification of
electronic properties of ultrathin β-Ga2O3 Films, Ukr. J. Phys. 66 (2021) 1048,
https://doi.org/10.15407/ujpe66.12.1048
301 R. Balabai, M. Naumenko, Sensory sensitivity to the form of β-Ga2O3
nanoparticles, Nanosistemi, Nanomateriali, Nanotehnologii 20 (3) (2022) 617-629,
https://www.imp.kiev.ua/nanosys/media/pdf/2022/3/nano_vol20_iss3_p067p0629_
2022.pdf.
302. L. Dong, R. Jia, C. Li, B. Xin, Y. Zhang, Ab initio study of N-doped βGa2O3 with intrinsic defects: the structural, electronic and optical properties, J. of
Alloys and Compounds 712C (2017) 379-385, https://doi.org/0.1016/
j.jallcom.2017.04.020.
303. J. R. Ritter, J. Huso, P. T. Dickens, J. B. Varley, K. G. Lynn, M. D.
McCluskey, Compensation and hydrogen passivation of magnesium acceptors in
β-Ga2O3, Appl. Phys. Let. 113 (5) (2018) 052101,
https://doi.org/10.1063/1.5044627.
304. Ye. N. Gribanov, O. I. Markov, Yu. V. Khripunov, Quantum-chemical
modeling bismuth-based clusters, Mater. Phys. and Mechan.43 (2020) 72-83,
https://doi.org/10.18720/MPM.4312020_9.
305. B. Cheng, E. T. Samulski, Fabrication and characterization of
nanotubular semiconductor oxides In2O3 and Ga2O3, Journal of Materials
Chemistry, 11 (2001) 2901, https://doi.org/10.1039/B108167E.
306. B. Zhang, P.-X. Gao, Metal oxide nanoarrays for chemical sensing: a
review of fabrication methods, sensing modes, and their inter-correlations, Front.
Mater. 6 (55) (2019), https://doi.org/10.3389/fmats.2019.00055.
307. Y. Zhang, J. Yang; Q. Li, X. Cao, Preparation of Ga2O3 nanoribbons
and tubes by electrospinning, J. Cryst. Growth, 308 (2007) 180,
https://doi.org/10.1016/j.jcrysgro.2007.07.036.
308. N. W. Gong, M. Y. Lu, C. Y. Wang, Y. Chen, L. J. Chen, Au(Si)-filled
β-Ga2O3 nanotubes as wide range high-temperature nanothermometers. Appl.
Phys. Lett. 92 (2008) 073101, https://doi.org/10.1063/1.2840574.
309. H. Jiang, Y. Chen, Q. Zhou, Y. Su, H. Xiao, L. Zhu, Temperature
dependence of Ga2O3 micro/nanostructures via vapor phase growth, Mater. Chem.
Phys. 103 (2007) 14, https://doi.org/10.1016/j.matchemphys.2007.02.031.
310. T. Braniste, M. Dragoman, S. Zhukov, M. Aldrigo, V. Ciobanu, S.
Iordanescu, L. Alyabyeva, F. Fumagalli, G. Ceccone, S. Raevschi, F. Schütt, R.
Adelung, P. Colpo, B. Gorshunov, I. Tiginyanu, Aero-Ga2O3 Nanomaterial
Electromagnetically Transparent from Microwaves to Terahertz for Internet of
Things Applications, Nanomaterials, 10 (6) (2020) 1047,
https://doi.org/10.3390/nano10061047.
311. Ziyao Zhou, Changyong Lan, SenPo Yip, Renjie Wei, Dapan Li, Lei
Shu, Johnny C. Ho, Towards high-mobility In2xGa2–2xO3 nanowire field-effect
transistors, Nano Research, 11 (11) (2018) 5935, https://doi.org/10.1007/ s12274-
018-2106-9.
312. G. F. Yang, P. Chen, Z. G. Yu, B. Liu, Z. L. Xie, X. Q. Xiu, P. Han, H.
Zhao, X. M. Hua, R. Zhang, and et al. Fabrication of GaN Nanocolumns with
Semipolar Plane Using Ni nano-island masks, Semicond. Technol., 36, 417 (2011).
313. H. S. Kim, G. Y. Yeom, J. W. Lee, T. I. Kim, Characteristics of
inductively coupled Cl2/BCl3 plasmas during GaN etching, J. Vac. Sci. Technol. A
17 (1999) 2214, https://doi.org/10.1116/1.581749.
314. M. Y. Hsieh, C. Y. Wang, L. Y. Chen, M. Y. Ke, J. Huang, InGaNGaN nanorod light emitting arrays fabricated by silica nanomasks, IEEE J.
Quantum Electron. 44 (2008) 468, https://doi.org/10.1109/JQE.2007.916665.
315. J. Lin, R. Zong, M. Zhou, Y. Zhu, Photoelectric catalytic degradation of
methylene blue by C60-modified TiO2 nanotube array, Appl. Catal. B Environ. 89
(2009) 425, https://doi.org/10.1016/j.apcatb.2008.12.025.
316. T. J. Hsueh, S. J. Chang, C. L. Hsu, Y. R. Lin, I. C. Chen, ZnO
nanotube ethanol gas sensors, J. Electrochem. Soc., 155, K152 (2008);
https://iopscience.iop.org/article/10.1149/ 1.2952535.
317. A. Star, Y. Lu, K. Bradley, G. Grüner, Nanotube optoelectronic
memory devices, Nano Lett. 4 (2004) 1587, https://doi.org/10.1021/nl049337f.
318. J. Han, Z. Liu, K. Guo, B. Wang, X. Zhang, T. Hong, High-efficiency
photoelectrochemical electrodes based on ZnIn2S4 sensitized ZnO nanotube
arrays, Appl. Catal. B Environ., 163 (2015) 179, https://doi.org/10.1016/
j.apcatb.2014.07.040.
319. Z. Zhuang, X. Guo, B. Liu, F. Hu, Y. Li, T. Tao, J. Dai, T. Zhi, Z. Xie,
P. Chen, D. Chen, H. Ge, X. Wang, M. Xiao, Y. Shi, Y. Zheng, R. Zhang, High
color rendering index hybrid III-nitride/nanocrystals white light-emitting diodes,
Adv. Funct. Mater., 26 (2016) 36, https://doi.org/10.1002/adfm.201502870.
320. B. Liu, D. Chen, H. Lu, T. Tao, Z. Zhuang, Z. Shao, W. Xu, H. Ge, T.
Zhi, F. Ren, J. Ye, Z. Xie, R. Zhang, Hybrid light emitters and UV solar-blind
avalanche photodiodes based on ІІІ-nitride semiconductors, Adv. Mater. 32 (2020)
1904354, https://doi.org/10.1002/adma.201904354.
321. Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G.-
S. Park, W. B. Choi, N. S. Lee, J. M. Kim, Catalytic growth of beta-Ga2O3
nanowires by arc discharge, Adv. Mater., 12 (10),
https://doi.org/10.1002/(SICI)1521-4095(200005)12:10<746::AID-ADMA746>
3.0.CO;2-N.
322. S. Ding, L. Zhang, Y. Li, X. Xiu, Z. Xie, T. Tao, B. Liu, P. Chen, R.
Zhang, Y. Zheng, A selective etching route for large-scale fabrication of β-Ga2O3
micro-/nanotube arrays, Nanomaterials, 11 (2021) 3327, https://doi.org/10.3390/
nano11123327.
323. H. Liang, Y. Chen, X. Xia, C. Zhang, R. Shen, Y. Liu, Y. Luo, G. Du,
A preliminary study of SF6 based inductively coupled plasma etching techniques
for beta gallium trioxide thin film, Mater. Sci. Semicond. Proc. 39 (2015) 582,
https://doi.org/10.1016/j.mssp.2015.05.065.
324. J. E. Hogan, S.W. Kaun, E. Ahmadi, Y. Oshima, J. S. Speck, Chlorinebased dry etching of β-Ga2O3, Semicond. Sci. Technol. 31 (2016) 065006,
https://doi.org/10.1088/0268-1242/31/6/065006.
325. J. Yang, S. Ahn, F. Ren, S. Pearton, R. Khanna, K. Bevlin, D.
Geerpuram, A. Kuramata, Inductively coupled plasma etching of bulk, single-crystal Ga2O3, J. Vac. Sci. Technol. B 35 (2017) 031205,
https://doi.org/10.1116/1.4982714.
326. Z. Lin, X. Xiu, S. Zhang, X. Hua, Z. Xie, R. Zhang, P. Han, Y. Zheng,
Arrays of GaN nano-pillars fabricated by nickel nano-island mask, Mater. Lett.
108 (2013) 250, https://doi.org/10.1016/j.matlet.2013.07.005.
327. L. Zhang, X. Xiu, Y. Li, Y. Zhu, X. Hua, Z. Xie, T. Tao, B. Liu, P.
Chen, R. Zhang, X. Xiu, Y. Li, Y. Zhu , X. Hua, Z. Xie, T. Tao, B. Liu, P. Chen,
R. Zhang, Y. Zheng, Solar-blind ultraviolet photodetector based on vertically
aligned single-crystalline β-Ga2O3 nanowire arrays, Nanophotonics 9 (2020) 4497,
https://doi.org/10.1515/nanoph-2020-0295.
328. S. Wang, Y. W. Li, X. Q. Xiu, L. I. Zhang, X.-M. Hua, Z.-L. Xie, T.
Tao, B. Liu, P. Chen, R. Zhang, Synthesis and characterization of β-Ga2O3@GaN
nanowires, Chin. Phys. B 28 (2019) 028104, https://doi.org/10.1088/1674-
1056/28/2/028104.
329. T. Yamada, J. Ito, R. Asahara, K. Watanabe, M. Nozaki, S. Nakazawa,
Y. Anda, M. Ishida, T. Ueda, A. Yoshigoe, T. Hosoi, T. Shimura, H. Watanabe,
Comprehensive study on initial thermal oxidation of GaN (0001) surface and
subsequent oxide growth in dry oxygen ambient, J. Appl. Phys. 121 (2017)
035303, https://doi.org/10.1063/1.4974458.
330. J. H. Choi, M. H. Ham, W. Lee, J. M. Myoung, Fabrication and
characterization of GaN/amorphous Ga2O3 nanocables through thermal oxidation,
Solid State Commun. 142 (2007) 437, https://doi.org/10.1016/j.ssc.2007.03.034.
331. L. Zhang, Y. Li, X. Xiu, G. Xin, Z. Xie, T. Tao, B. Liu, P. Chen, R.
Zhang, Y. Zheng, Preparation of vertically aligned GaN@Ga2O3 core-shell
heterostructured nanowire arrays and their photocatalytic activity for degradation
of Rhodamine B., Superlattices Microstruct. 143 (2020) 106556,
https://doi.org/10.1016/ j.spmi.2020.106556.
332. J. P. Rex, Y. F. Kwong, Lim Hwee San,The influence of deposition
temperature on the structural, morphological and optical properties of micro-size structures of beta-Ga2O3, Results in Physics, 14 (2019) 102475,
https://doi.org/10.1016/j.rinp.2019.102475.
333. S. Wang, K. Chen, H. Zhao, C. He, C. Wu, D. Guo, N. Zhao, G. Ungar,
J. Shen, X. Chu, P. Li, W. Tangb, β-Ga2O3 nanorod arrays with high light-toelectron conversion for solar-blind deep ultraviolet photodetection, RSC Adv. 9
(2019) 6064, https://doi.org/10.1039/c8ra10371b.
334. M. C. Johnson, Shaul Aloni, D. E. McCready, E. D. BourretCourchesne, Controlled vapor-liquid-solid growth of indium, gallium, and tin
oxide nanowires via chemical vapor transport, Crystal Growth & Design, 6 (8)
(2006) 1936, https://doi.org/10.1021/cg050524g.
335. B. Alhalaili, R. J. Bunk, H. Mao, H. Cansizoglu, R. Vidu, J. Woodall,
M. Saif Islam, Gallium oxide nanowires for UV detection with enhanced growth
and material properties, Scientific Reports, 10, 21434 (2020);
https://doi.org/10.1038/s41598-020-78326-x.
336. M. Law, J. Goldberger, P. Yang, Semiconductor nanowires and
nanotubes, Annu. Rev. Mater. Res. 34 (2004) 83, https://doi.org/10.1146/
annurev.matsci.34.040203.112300.
337. H. Zeng, G. Zhang, K. Nagashima, T. Takahashi, T. Hosomi, T.
Yanagida, Metal-oxide nanowire molecular sensors and their promises,
Chemosensors, 9 (2) (2021) 41, https://doi.org/10.3390/chemosensors9020041.
338. Ab initio calculation. Web source: http://sites.google.com/
a/kdpu.edu.ua/calculationphysics.
339. Р. М. Балабай, А. Ю. Ків, Н. В. Моісеєнко Розрахунки із перших
принципів характеристик домішко-дефектних комплексів у кремнії при
великих концентраціях домішок, УФЖ, 50 (3) 2005 255-259.
http://archive.ujp.bitp.kiev.ua/files/journals/50/3/500308p.pdf.
340. L. K. Ping, M. A. Mohamed, A. K. Mondal, M. F. M. Taib, M. H.
Samat, D. D. Berhanuddin, P. S. Menon, R. Bahru, First-Principles studies for
electronic structure and optical properties of strontium doped β-Ga2O3,
Micromachines 12 (4) (2021) 348, https://doi.org/10.3390/mi12040348.