Description:
1. V. Gupta, S. Kapur, S. Saurabh, A. Grover, Resistive random access memory: a
review of device challenges, IETE Tech. Review (2019) 1-14,
https://doi.org/10.1080/02564602.2019.1629341.
2. R. Dittmann, J. P. Strachan, Redox-based memristive devices for new
computing paradigm, APL Materials 7 (2019) 110903,
https://doi.org/10.1063/1.5129101.
3. X. Yang, Demonstration of ultra-fast switching in nanometallic resistive
switching memory devices, Journal of Nanoscience (2016) 1-7,
https://doi.org/10.1155/2016/8132701.
4. S. Yin, Monolithically Integrated RRAM- and CMOS-Based In-Memory
Computing Optimizations for Efficient Deep Learning, IEEE Micro 39 (2019) 54-
63, https://doi.org/10.1109/MM.2019.2943047.
5. T. Zanotti, P. Pavan, F.M. Puglisi, Comprehensive physics-based RRAM
compact model including the effect of variability and multi-level random telegraph
noise, Microelectronic Engineering 266 (2022) 111886,
https://doi.org/10.1016/j.mee.2022.111886.
6. H. Lee, P. Chen, T. Wu, Y. Chen, C. Wang, P. Tzeng, Low power and high
speed bipolar switching with a thin reactive Ti buffer layer in robust HfO2 based
RRAM, IEEE International Electron Devices Meeting (2008) 1-4,
https://doi.org/10.1109/IEDM.2008.4796677.
7. S. Choi, S. H. Tan, Z. Li, SiGe epitaxial memory for neuromorphic computing
with reproducible high performance based on engineered dislocations, Nature
Materials 17 (2018) 335-340, https://doi.org/10.1038/s41563-017-0001-5.
8. D. Kim, S. Kim, S. Kim, Logic-in-memory application of CMOS compatible
silicon nitride memristor, Chaos, Solitons & Fractals 153 (2021) 2,
https://doi.org/10.1016/j.chaos.2021.111540.
9. C. Wang, Multi-State Memristors and Their Applications: An Overview, IEEE
Journal on Emerging and Selected Topics in Circuits and Systems 12 (2022) 723-
734, https://doi.org/10.1109/JETCAS.2022.3223295.
10. T. Endoh, H. Koike, S. Ikeda, T. Hanyu, H. Ohno, An Overview of Nonvolatile
Emerging Memories — Spintronics for Working Memories, IEEE Journal on Emerging and Selected Topics in Circuits and Systems 6 (2016) 109-119,
https://doi.org/10.1109/JETCAS.2016.2547704.
11. L. Sunghwan, S. Shem, L. Jinho, J. Dasom, A. Batyrbek, K. Arman, L.
Seunghyun, Metal oxide resistive memory with a deterministic conduction path, J.
Mater. Chem. C 8 (2020) 3897-3903, https://doi.org/10.1039/C9TC07001J.
12. A. Sawa, Resistive switching in transition metal oxides, Materials today 11
(2008) 28-36, https://doi.org/10.1016/S1369-7021(08)70119-6.
13. H. Wong, H. Lee, S. Yu, Y. Chen, Y. Wu, P. Chen, B. Lee, F. Chen, M. Tsai,
Metal-oxide RRAM, Proceedings of the IEEE 100 (2012) 1951-1970,
https://doi.org/10.1109/JPROC.2012.2190369.
14. M. Wu, J. Chen, Y. Ting, C. Huang, W. Wu, A novel high-performance and
energy-efficient RRAM device with multi-functional conducting nanofilaments,
Nano Energy 82 (2021) 2211-2855, https://doi.org/10.1016/j.nanoen.2020.105717.
15. S. Tappertzhofen, Introduction to non-volatile memory, Metal Oxides, Metal
Oxides for Non-volatile Memory (2022) 1-32, https://doi.org/10.1016/B978-0-12-
814629-3.00001-5.
16. S. Dubey, A. Reddy, R. Patel, M. Abz, A. Srinivasulu, A. Islam, Architecture
of resistive RAM with write driver, Solid State Electronics Letters 2 (2020) 10-22,
ISSN 2589-2088, https://doi.org/10.1016/j.ssel.2020.01.001.
17. P. Cappelletti, J. Slaughter, Embedded memory solutions: Charge storagebased, resistive and magnetic, Electronic and Optical Materials, Semiconductor
Memories and Systems (2022) 159-215, https://doi.org/10.1016/B978-0-12-
820758-1.00007-8.
18. K. Kuhn, CMOS and Beyond CMOS: Scaling Challenges, Electronic and
Optical Materials, High Mobility Materials for CMOS Applications (2018) 1-44,
https://doi.org/10.1016/B978-0-08-102061-6.00001-X.
19. P. Jeho, Applications of Field-Effect Transistor (FET)-Type Biosensors,
Applied Science and Convergence Technology 23 (2014) 61-71,
https://doi.org/10.5757/ASCT.2014.23.2.61.
20. J. Reuben, Rediscovering Majority Logic in the Post-CMOS Era: A
Perspective from In-Memory Computing, J. Low Power Electron. Appl. 10 (2020)
28, https://doi.org/10.3390/jlpea10030028.
21. P. Meinerzhagen, S. Sherazi, A. Burg, J. Rodrigues, Benchmarking of
Standard-Cell Based Memories in the sub-VT Domain in 65-nm CMOS
Technology, IEEE Journal on Emerging and Selected Topics in Circuits and
Systems 1 (2011) 173-182, https://doi.org/10.1109/JETCAS.2011.2162159.
22. S. Bose, V. Mohan, A. Basu, A 75kb SRAM in 65nm CMOS for In-Memory
Computing Based Neuromorphic Image Denoising, IEEE International
Symposium on Circuits and Systems (2020) 1-5,
https://doi.org/10.1109/ISCAS45731.2020.9181218.
23. S. Karthi, Ultra-Low Power Memory Circuit Unit for Space Application, IOP
Conf. Ser.: Mater. Sci. Eng. (2021) 1084, https://doi.org/10.1088/1757-
899X/1084/1/012059.
24. H. Byron, X. Nuo, S. Takuji, M. Kaoru, T. Masayuki, A. Yasushi, K. Tsu-Jae,
Fabrication of segmented-channel MOSFETs for reduced short-channel effects,
International Semiconductor Device Research Symposium (2011) 1-2,
https://doi.org/10.1109/ISDRS.2011.6135280.
25. K. Ando, S. Fujita, J. Ito, S. Yuasa, Y. Suzuki, Y. Nakatani, T. Miyazaki, H.
Yoda, Spin-transfer torque magnetoresistive random-access memory technologies
for normally off computing (invited), Journal of Applied Physics 115 (2014)
172607, https://doi.org/10.1063/1.4869828.
26. G. Molas, L. Masoero, V. Della Marca, G. Gay, B. De Salvo, Improving
embedded Flash memory technology: silicon and metal nanocrystals, engineered
charge-trapping layers and split-gate memory architectures, Advances in Nonvolatile Memory and Storage Technology (2014) 120-157,
https://doi.org/10.1533/9780857098092.1.120.
27. T. Chang, K. Chang, T. Tsai, T. Chu, S. Sze, Resistance random access
memory, Materials Today 19 (2016) 254-264,
https://doi.org/10.1016/j.mattod.2015.11.009.
28. G. Burr, R. Shenoy, K. Virwani, P. Narayanan, A. Padilla, B. Kurdi, H.
Hwang, Access devices for 3D crosspoint memory, Journal of Vacuum Science &
Technology B 32 (2014) 040802, https://doi.org/10.1116/1.4889999.
29. G. Molas, E. Nowak, Advances in Emerging Memory Technologies: From
Data Storage to Artificial Intelligence, Appl. Sci. 11 (2021) 11254,
https://doi.org/10.3390/app112311254.
30. U. Rasheed, H. Ryu, C. Mahata, R. Arif Khalil, M. Imran, A. Manzoor Rana,
F. Kousar, B. Kim, Y. Kim, S. Cho, F. Hussain, S. Kim, Resistive switching
characteristics and theoretical simulation of a Pt/a-Ta2O5/TiN synaptic device for
neuromorphic applications, Journal of Alloys and Compounds 877 (2021) 160204,
https://doi.org/10.1016/j.jallcom.2021.160204.
31. Y. Denny, T. Firmansyah, S. Oh, H. Kang, D. Yang, S. Heo, J. Chung, J. Lee,
Effect of oxygen deficiency on electronic properties and local structure of
amorphous tantalum oxide thin films, Materials Research Bulletin 82 (2016) 1-6,
https://doi.org/10.1016/j.materresbull.2016.03.004.
32. W. Banerjee, Challenges and Applications of Emerging Nonvolatile Memory
Devices, Electronics 9 (2020) 1029, https://doi.org/10.3390/electronics9061029.
33. Z. Jiang, Y. Wu, S. Yu, L. Yang, K. Song, Z. Karim, H. Wong, A Compact
model for metal-oxide resistive random access memory with experiment
verification, IEEE Transactions on Electron Devices 63 (2016) 1884-1892,
https://doi.org/10.1109/TED.2016.2545412.
34. D. Maldonado, S. Aldana, M. González, F. Jiménez-Molinos, M. Ibáñez, D.
Barrera, F. Campabadal, J. Roldán, Variability estimation in resistive switching
devices, a numerical and kinetic Monte Carlo perspective, Microelectronic
Engineering 257 (2022) 111736, https://doi.org/10.1016/j.mee.2022.111736.
35. F. Pan, S. Gao, C. Chen, C. Song, F. Zeng, Recent progress in resistive random
access memories: materials, switching mechanisms, and performance, Materials
Science and Engineering: R: Reports 83 (2014) 1-59,
https://doi.org/10.1016/j.mser.2014.06.002.
36. J. Aeschlimann, M. Bani-Hashemian, F. Ducry, A. Emboras, M. Luisier,
Insights into few-atom conductive bridging random access memory cells with a
combined force-field/ab initio scheme, Solid-State Electronics 199 (2023) 108493,
https://doi.org/10.1016/j.sse.2022.108493.
37. S. Aldana, P. García-Fernández, R. Romero-Zaliz, F. Jiménez-Molinos, F.
Gómez-Campos, J. Roldán, Analysis of conductive filament density in resistive
random access memories: a 3D kinetic Monte Carlo approach, Journal of Vacuum
Science & Technology B 36 (2018) 062201, https://doi.org/10.1116/1.5049213.
38. C. Wang, H. Wu, B. Gao, T. Zhang, Y. Yang, H. Qian, Conduction
mechanisms, dynamics and stability in ReRAMs, Microelectronic Engineering 187
(2018) 121-133, https://doi.org/10.1016/j.mee.2017.11.003.
39. H. Abbas, J. Li, D. Ang, Conductive Bridge Random Access Memory
(CBRAM): Challenges and Opportunities for Memory and Neuromorphic
Computing Applications, Micromachines 13 (2022) 725,
https://doi.org/10.3390/mi13050725.
40. D. Jana, S. Roy, R. Panja, Conductive-bridging random access memory:
challenges and opportunity for 3D architecture, Nanoscale Res. Lett. 10 (2015)
188, https://doi.org/10.1186/s11671-015-0880-9.
41. J. Cha, S. Yang, J. Oh, S. Choi, S. Park, B. Jang, W. Ahn, S. Choi, Conductivebridging random-access memories for emerging neuromorphic computing,
Nanoscale 12 (2020) 14339-14368, https://doi.org/10.1039/D0NR01671C.
42. H. Cho, S. Kim, Emulation of Biological Synapse Characteristics from
Cu/AlN/TiN Conductive Bridge Random Access Memory, Nanomaterials 10
(2020) 1709, https://doi.org/10.3390/nano10091709.
43. K. Mohammad, Modeling and Simulation of Nonvolatile Memory Based on
copper sulfide, Tikrit Journal of Engineering Sciences 23 (2016) 103-109,
https://doi.org/10.25130/tjes.23.2.12.
44. H. Cao, H. Ren, A 10-nm-thick silicon oxide based high switching speed
conductive bridging random access memory with ultra-low operation voltage and
ultra-low LRS resistance, Appl. Phys. Lett. 120 (2022) 133502,
https://doi.org/10.1063/5.0085045.
45. T. Liu, T. Yan, R. Scheuerlein, Y. Chen, J. Lee, A 130.7mm2
2-layer 32Gb
ReRAM memory device in 24nm technology, Digest of Technical Papers - IEEE
International Solid-State Circuits Conference 56 (2013) 210-211,
https://doi.org/10.1109/ISSCC.2013.6487703.
46. T. Yamamoto, S. Hatayama, Y. Sutou, Design strategy of phase change
material properties for low-energy memory application, Materials & Design 216
(2022) 110560, https://doi.org/10.1016/j.matdes.2022.110560.
47. S. Agarwal, P. Lohia, D. Dwivedi, Emerging phase change memory devices
using non-oxide semiconducting glasses, Journal of Non-Crystalline Solids 597
(2022) 121874, https://doi.org/10.1016/j.jnoncrysol.2022.121874.
48. S. Nandakumar, M. Le Gallo, I. Boybat, B. Rajendran, A. Sebastian, E.
Eleftheriou, A phase-change memory model for neuromorphic computing, Journal
of Applied Physics 124 (2018) 152135, https://doi.org/10.1063/1.5042408.
49. Y. Zhu, Z. Zhang, S. Song, H. Xie, Z. Song, X. Li, L. Shen, L. Li, L. Wu, B.
Liu, Ni-doped GST materials for high speed phase change memory applications,
Materials Research Bulletin 64 (2015) 333-336,
https://doi.org/10.1016/j.materresbull.2015.01.016.
50. K. Stern, Y. Keller, C. Neumann, E. Pop, E. Yalon, Temperature-dependent
thermal resistance of phase change memory, Appl. Phys. Lett. 120 (2022) 113501,
https://doi.org/10.1063/5.0081016.
51. N. Raeis-Hosseini, J. Rho, Dual-Functional Nanoscale Devices Using PhaseChange Materials: A Reconfigurable Perfect Absorber with Nonvolatile
Resistance-Change Memory Characteristics, Appl. Sci. 9 (2019) 564,
https://doi.org/10.3390/app9030564.
52. A. Lotnyk, H. Bryja, X. Wang, M. Xu, Q. Lin, X. Cheng, M. Xu, H. Tong, X.
Miao, J. Feng, ―Stickier‖-Surface Sb2Te3 Templates Enable Fast Memory
Switching of Phase Change Material GeSb2Te4 with Growth-Dominated
Crystallization, ACS Applied Materials & Interfaces 12 (2020) 33397-33407,
https://doi.org/10.1021/acsami.0c07973.
53. P. Guo, A. Sarangan, I. Agha, A Review of Germanium-Antimony-Telluride
Phase Change Materials for Non-Volatile Memories and Optical Modulators, Appl.
Sci. 9 (2019) 530, https://doi.org/10.3390/app9030530.
54. Y. Saito, M. Morota, K. Makino, J. Tominaga, Recent developments
concerning the sputter growth of chalcogenide-based layered phase-change
materials, Materials Science in Semiconductor Processing 135 (2021) 106079,
https://doi.org/10.1016/j.mssp.2021.106079.
55. Y. Saito, Origin of resistivity contrast in interfacial phase-change memory: The
crucial role of Ge/Sb intermixing, Appl. Phys. Lett. 114 (2019) 132102,
https://doi.org/10.1063/1.5088068.
56. J. Tominaga, The Design and Application on Interfacial Phase-Change
Memory, Physica status solidi (RRL) - Rapid Research Letters 13 (2018) 539,
https://doi.org/10.1002/pssr.201800539.
57. P. Gupta, P. Lohia, D. Dwivedi, Phase change memory: Operation, current
challenges and future prospects, International Journal of Engineering, Science and
Technology: Special Issue 13 (2021) 93-97,
https://doi.org/10.4314/ijest.v13i1.14S.
58. G. Chen, J. Zheng, Z. Wang, K. Zhang, Z. Mo, X. Liu, T. Gao, Y. Wang, J.
Wei, Fabrication of micro/nano multifunctional patterns on optical glass through
chalcogenide heat-mode resist AgInSbTe, Journal of Alloys and Compounds 867
(2021) 158988, https://doi.org/10.1016/j.jallcom.2021.158988.
59. S. Hong, B. Bae, H. Lee, Fast switching behavior of nanoscale Ag6In5Sb59Te30
based nanopillar type phase change memory, Nanotechnology 21 (2010) 025703,
https://doi.org/10.1088/0957-4484/21/2/025703.
60. W. Zhang, E. Ma, Unveiling the structural origin to control resistance drift in
phase-change memory materials, Materials Today 41 (2020) 156-176,
https://doi.org/10.1016/j.mattod.2020.07.016.
61. K. Okabe, A. Sood, E. Yalon, C. Neumann, M. Asheghi, E. Pop, K. Goodson,
H. Wong, Understanding the switching mechanism of interfacial phase change
memory, Journal of Applied Physics 125 (2019) 184501,
https://doi.org/10.1063/1.5093907.
62. W. Yang, N. Hur, D. Lim, H. Jeong, J. Suh, Heterogeneously structured phasechange materials and memory, Journal of Applied Physics 129 (2021) 050903,
https://doi.org/10.1063/5.0031947.
63. S. Tappertzhofen, Resistive switching in metal-oxide memristive materials and
devices, Metal Oxides, Metal Oxides for Non-volatile Memory (2022) 1-32,
https://doi.org/10.1016/B978-0-12-814629-3.00001-5.
64. K. Sakui, N. Harada, Dynamic Flash Memory with fast block refresh feature
using double storage gates and one select gate, Memories - Materials, Devices,
Circuits and Systems 2 (2022) 100007,
https://doi.org/10.1016/j.memori.2022.100007.
65. H. Nakamura, H. Sakuraba, F. Masuoka, NAND-type DRAM-on-SGT, IEEE
Transactions on Electron Devices 52 (2005) 427-429,
https://doi.org/10.1109/TED.2004.842717.
66. Y. van de Burgt, E. Lubberman, E. Fuller, A non-volatile organic
electrochemical device as a low-voltage artificial synapse for neuromorphic
computing, Nature Materials 16 (2017) 414–418, https://doi.org/
10.1038/nmat4856.
67. M. Zidan, J. Strachan, W. Lu, The future of electronics based on memristive
systems, Nature Electronics 1 (2018) 22-29, https:// doi.org/10.1038/s41928-017-
0006-8.
68. F. Pellizzer, A. Redaelli, 3DXpoint fundamentals, Electronic and Optical
Materials, Semiconductor Memories and Systems (2022) 253-276,
https://doi.org/10.1016/B978-0-12-820758-1.00005-4.
69. T. Endoh, 3D integration of memories including heterogeneous integration,
International Symposium on VLSI Technology, Systems and Applications (2021)
1-2, https://doi.org/10.1109/VLSI-TSA51926.2021.9440129.
70. T. Hadámek, S. Selberherr, W. Goes, Modeling thermal effects in STTMRAM, Solid-State Electronics 200 (2023) 108522,
https://doi.org/10.1016/j.sse.2022.108522.
71. E. Garzón, R. De Rose, F. Crupi, L. Trojman, M. Lanuzza, Assessment of
STT-MRAM performance at nanoscaled technology nodes using a device-tomemory simulation framework, Microelectronic Engineering 215 (2019) 111009,
https://doi.org/10.1016/j.mee.2019.111009.
72. Z. Bian, X. Hong, Y. Guo, L. Naviner, W. Ge, H. Cai, Investigation of PVTAware STT-MRAM Sensing Circuits for Low-VDD Scenario, Micromachines 12
(2021) 551, https://doi.org/10.3390/mi12050551.
73. L. Zhang, H. Tang, B. Xu, Y. Zhuang, B. Junlin, A High Reliability Sense
Amplifier for Computing In-Memory with STT-MARM, SPIN 10 (2020) 2040001,
https://doi.org/10.1142/S2010324720400020.
74. V. Salehi, T. Tran, B. Veitch, D. Smith, A reinforcement learning development
of the FRAM for functional reward-based assessments of complex systems
performance, International Journal of Industrial Ergonomics 88 (2022) 103271,
https://doi.org/10.1016/j.ergon.2022.103271.
75. X. Zeng, Q. Liu, J. Tay, C. Chew, J. Cheah, C. Gan, High resolution front-side
visualization of charge stored in EEPROM with scanning nonlinear dielectric
microscopy, Nanotechnology 32 (2021) 485201, https://doi.org/10.1088/1361-
6528/ac1ebd.
76. G. Molas, L. Grenouillet, Other emerging memories, Electronic and Optical
Materials, Semiconductor Memories and Systems (2022) 277-304,
https://doi.org/10.1016/B978-0-12-820758-1.00006-6.
77. L. Liu, D. Wang, H. Lin, X. Zhao, Z. Wang, N. Xu, X. Luo, N. Gao, X. Xue,
C. Pan, C. Xie, G. Xing, 3T2M canted-type x SOT-MRAM: Field-free, highenergy-efficiency, and high-read-margin memory toward cache applications, Journal of Science: Advanced Materials and Devices 7 (2022) 100508,
https://doi.org/10.1016/j.jsamd.2022.100508.
78. M. Varshika, F. Corradi, A. Das, Nonvolatile Memories in Spiking Neural
Network Architectures: Current and Emerging Trends, Electronics 11 (2022) 1610,
https://doi.org/10.3390/electronics11101610.
79. S. Wei, B. Gao, D. Wu, J. Tang, H. Qian, H. Wu, Trends and challenges in the
circuit and macro of RRAM-based computing-in-memory systems, Chip 1 (2022)
100004, https://doi.org/10.1016/j.chip.2022.100004.
80. N. Prabhu, D. Loy Jia Jun, P. Dananjaya, W. Lew, E. Toh, N. Raghavan,
Exploring the Impact of Variability in Resistance Distributions of RRAM on the
Prediction Accuracy of Deep Learning Neural Networks, Electronics 9 (2020) 414,
https://doi.org/10.3390/electronics9030414.
81. S. Spiga, A. Sebastian, D. Querlioz, B. Rajendran, Electronic and Optical
Materials, Memristive Devices for Brain-Inspired Computing (2020) Pages 531-
547, https://doi.org/10.1016/C2017-0-04786-9.
82. D. Zhang, B. Peng, Y. Zhao, Z. Han, Q. Hu, X. Liu, Y. Han, H. Yang, J.
Cheng, Q. Ding, H. Jiang, J. Yang, H. Lv, Sensing Circuit Design Techniques for
RRAM in Advanced CMOS Technology Nodes, Micromachines 12 (2021) 913,
https://doi.org/10.3390/mi12080913.
83. B. Yang, D. Arumí, S. Manich, A. Gómez-Pau, R. Rodríguez-Montañés, M.
González, F. Campabadal, L. Fang, Serial RRAM Cell for Secure Bit Concealing,
Electronics 10 (2021) 1842, https://doi.org/10.3390/electronics10151842.
84. S. Qin, Y. Ma, Q. Wang, J. Zhang, G. Zhang, L. Yang, R. Liu, Study on ion
dynamics of hafnium oxide RRAM by electrode thermal effect, Energy Reports 9
(2023) 1036-1043, https://doi.org/10.1016/j.egyr.2022.11.132.
85. H. Aziza, S. Hamdioui, M. Fieback, M. Taouil, M. Moreau, P. Girard, A.
Virazel, K. Coulié, Multi-Level Control of Resistive RAM (RRAM) Using a Write
Termination to Achieve 4 Bits/Cell in High Resistance State, Electronics 10 (2021)
2222, https://doi.org/10.3390/electronics10182222.
86. Z. Shen, C. Zhao, Y. Qi, W. Xu, Y. Liu, I. Mitrovic, L. Yang, C. Zhao,
Advances of RRAM Devices: Resistive Switching Mechanisms, Materials and
Bionic Synaptic Application, Nanomaterials 10 (2020) 1437,
https://doi.org/10.3390/nano10081437.
87. I. Yeo, S. Gi, G. Wang, B. Lee, A Hardware and Energy-Efficient Online
Learning Neural Network With an RRAM Crossbar Array and Stochastic Neurons,
IEEE Transactions on Industrial Electronics 68 (2021) 11554-11564,
https://doi.org/10.1109/TIE.2020.3032867.
88. C. Gupta, P. Jain, U. Chand, Effect of Top Electrode Materials on Switching
Characteristics and Endurance Properties of Zinc Oxide Based RRAM Device, J.
Nano Electron. Phys. 12 (2020) 01007, https://doi.org/10.21272/jnep.12(1).01007.
89. J. Fabero, G. Korkian, F. Franco, G. Hubert, H. Mecha, M. Letiche, J.
Clemente, SEE sensitivity of a COTS 28-nm SRAM-based FPGA under thermal
neutrons and different incident angles, Microprocessors and Microsystems 96
(2023) 104743, https://doi.org/10.1016/j.micpro.2022.104743.
90. T. Calzecchi-Onesti, Sulla conduttività elettrica delle limature metalliche,
Nuovo Cim 16 (1884) 58-64, https://doi.org/10.1007/BF02737267.
91. T. Hickmott, Low‐Frequency Negative Resistance in Thin Anodic Oxide
Films, Journal of Applied Physics 33 (1962) 2669-2682,
https://doi.org/10.1063/1.1702530.
92. L. Chua, Memristor-The missing circuit element, IEEE Transactions on Circuit
Theory 18 (1971) 507-519, https://doi.org/10.1109/TCT.1971.1083337.
93. D. Strukov, G. Snider, D. Stewart, The missing memristor found, Nature 453
(2008) 80-83, https://doi.org/10.1038/nature06932.
94. Q. Xia, J. Yang, Memristive crossbar arrays for brain-inspired computing, Nat.
Mater. 18 (2019) 309-323, https://doi.org/10.1038/s41563-019-0291-x.
95. B. Gerislioglu, G. Bakan, R. Ahuja, J. Adam, Y. Mishra, A. Ahmadivand, The
role of Ge2Sb2Te5 in enhancing the performance of functional plasmonic devices,
Materials Today Physics 12 (2020) 100178,
https://doi.org/10.1016/j.mtphys.2020.100178.
96. M. Luong, S. Ran, M. Bernard, A. Claverie, An experimental study of Ge
diffusion through Ge2Sb2Te5, Materials Science in Semiconductor Processing 152
(2022) 107101, https://doi.org/10.1016/j.mssp.2022.107101.
97. S. Khan, A. Al-Shidaifat, H. Song, Efficient Memristive Circuit Design of
Neural Network-Based Associative Memory for Pavlovian Conditional Reflex,
Micromachines 13 (2022) 1744, https://doi.org/10.3390/mi13101744.
98. A.El Mesoudy, G. Lamri, R. Dawant, J. Arias-Zapata, P. Gliech, Y. Beilliard,
S. Ecoffey, A. Ruediger, F. Alibart, D. Drouin, Fully CMOS-compatible passive
TiO2-based memristor crossbars for in-memory computing, Microelectronic
Engineering 255 (2022) 111706, https://doi.org/10.1016/j.mee.2021.111706.
99. M. Abbas, G. Lee, J. Bang, Cationic and Anionic Vacancy-Dependent Memory
Effect in TiO2, ACS Appl. Energy Mater. 5 (2022) 5498-5501,
https://doi.org/10.1021/acsaem.2c00443.
100. Y. Yu, Q. Wang, Y, Li, M. Rehman, W. Khan, Sr and Zr Co-Doped
CaCu3Ti4O12 Ceramics with Improved Dielectric Properties, Materials 15 (2022)
4243, https://doi.org/10.3390/ma15124243.
101. R. Gu, M. Xu, C. Qiao, C.Wang, K. Ho, S. Wang, M. Xu, X. Miao, How
arsenic makes amorphous GeSe a robust chalcogenide glass for advanced memory
integration, Scripta Materialia 218 (2022) 114834,
https://doi.org/10.1016/j.scriptamat.2022.114834.
102. S. Kingra, V. Parmar, S. Negi1, A. Bricalli, G. Piccolboni, A. Regev, J.
Nodin, G. Molas, M. Suri, Dual-configuration in-memory computing bitcells using
SiOx RRAM for binary neural networks, Appl. Phys. Lett. 120 (2022) 034102,
https://doi.org/10.1063/5.0073284.
103. Y. Lee, J. Shin, G. Nam, D. Chung, S. Kim, J. Jeon, S. Kim, Atomic Layer
Deposited SiOx-Based Resistive Switching Memory for Multi-Level Cell Storage,
Metals 12 (2022) 1370, https://doi.org/10.3390/met12081370.
104. S. Mohanty, K. Reddy, C. Wu, P. Lee, K. Chang, P. Busa, Y. Kuthati,
Investigation of Barrier Layer Effect on Switching Uniformity and Synaptic
Plasticity of AlN Based Conductive Bridge Random Access Memory, Electronics
11 (2022) 3432, https://doi.org/10.3390/electronics11213432.
105. W. Banerjee, Q. Liu, Nanocrystals in Nonvolatile Memory, Pan Stanford
Publishing (2018) 389-468, https://doi.org/10.1201/9781351203272.
106. J. Sun, Q. Liu, H. Xie, X. Wu, F. Xu, T. Xu, S. Long, H. Lv, Y. Li, L. Sun,
M. Liu, In situ observation of nickel as an oxidizable electrode material for the
solid-electrolyte-based resistive random access memory, Appl. Phys. Lett. 102
(2013) 053502, https://doi.org/10.1063/1.4790837.
107. C. Pearson, L. Bowen, M. Lee, A. Fisher, K. Linton, M. Bryce, M. Petty,
Focused ion beam and field-emission microscopy of metallic filaments in memory
devices based on thin films of an ambipolar organic compound consisting of oxadiazole, carbazole, and fluorene units, Appl. Phys. Lett. 102 (2013) 213301,
https://doi.org/10.1063/1.4808026.
108. P. Peng, D. Xie, Y. Yang, Y. Zang, X. Gao, C. Zhou, T. Feng, H. Tian, T.
Ren, X. Zhang, Resistive switching behavior in diamond-like carbon films grown
by pulsed laser deposition for resistance switching random access memory
application, Journal of Applied Physics 111 (2012) 084501,
https://doi.org/10.1063/1.3703063.
109. Z. Wang, P. Griffin, J. McVittie, S. Wong, P. McIntyre, Y. Nishi, Resistive
Switching Mechanism in ZnxCd1−xS Nonvolatile Memory Devices, IEEE Electron
Device Letters 28 (2007) 14-16, https://doi.org/10.1109/LED.2006.887640.
110. X. Zhu, W. Su, Y. Liu, B. Hu, L. Pan, W. Lu, J. Zhang, R. Li, Observation of
conductance quantization in oxide-based resistive switching memory, Adv Mater.
24 (2012) 3941-3946, https://doi.org/10.1002/adma.201201506.
111. C. Peng, C. Wang, T. Chan, Resistive switching of Au/ZnO/Au resistive
memory: an in situ observation of conductive bridge formation, Nanoscale Res
Lett 7 (2012) 559, https://doi.org/10.1186/1556-276X-7-559.
112. Y. Yang, F. Pan, F. Zeng, M. Liu , Switching mechanism transition induced
by annealing treatment in nonvolatile Cu/ZnO/Cu/ZnO/Pt resistive memory: From
carrier trapping/detrapping to electrochemical metallization, Journal of Applied
Physics 106 (2009) 123705, https://doi.org/10.1063/1.3273329.
113. H. Chung, H. Shin, J. Park, W. Sun, A Unified Current-Voltage Model for
Metal Oxide-Based Resistive Random-Access Memory, Materials 16 (2023) 182,
https://doi.org/10.3390/ma16010182.
114. L. Bozano, B. Kean, V. Deline, J. Salem, J. Scott , Mechanism for bistability
in organic memory elements, Appl. Phys. Lett. 84 (2004) 607-609,
https://doi.org/10.1063/1.1643547.
115. Z. Yan, J. Liu, Coexistence of high performance resistance and capacitance
memory based on multilayered metal-oxide structures, Sci Rep. 3 (2013) 2482,
https://doi.org/10.1038/srep02482.
116. X. Guo, C. Schindler, S. Menzel, R. Waser, Understanding the switching-off
mechanism in Ag+ migration based resistively switching model systems, Appl.
Phys. Lett. 91 (2007) 133513, https://doi.org/10.1063/1.2793686.
117. M. Kozicki, M. Mitkova, Mass transport in chalcogenide electrolyte films -
materials and applications. Journal of Non-Crystalline Solids 352 (2006) 567-577,
https://doi.org/10.1016/j.jnoncrysol.2005.11.065.
118. A. Gubicza, D. Manrique, L. Pósa, C. Lambert, G. Mihály, M. Csontos, A.
Halbritter, Asymmetry-induced resistive switching in Ag-Ag2S-Ag memristors
enabling a simplified atomic-scale memory design, Sci Rep. 6 (2016) 30775,
https://doi.org/10.1038/srep30775.
119. S. Choi, G. Park, K. Kim, S. Cho, W. Yang, X. Li, J. Moon, K. Lee, K. Kim,
In Situ Observation of Voltage-Induced Multilevel Resistive Switching in Solid
Electrolyte Memory, Adv. Mater. 23 (2011) 3272-3277,
https://doi.org/10.1002/adma.201100507.
120. T. Fujii, M. Arita, Y. Takahashi, I. Fujiwara, In situ transmission electron
microscopy analysis of conductive filament during solid electrolyte resistance
switching, Appl. Phys. Lett. 98 (2011) 212104, https://doi.org/10.1063/1.3593494.
121. Q. Liu, J. Sun, H. Lv, S. Long, K. Yin, N. Wan, Y. Li, L. Sun, M. Liu, RealTime Observation on Dynamic Growth/Dissolution of Conductive Filaments in
Oxide-Electrolyte-Based ReRAM, Adv. Mater. 24 (2012) 1844-1849,
https://doi.org/10.1002/adma.201104104.
122. B. Cho, J. Yun, S. Song, Y. Ji, D. Kim, T. Lee, Direct Observation of Ag
Filamentary Paths in Organic Resistive Memory Devices, Adv. Funct. Mater. 21
(2011) 3976-3981, https://doi.org/10.1002/adfm.201101210.
123. Z. Xu, Y. Bando, W. Wang, X. Bai, D. Golberg, Real-Time In Situ HRTEMResolved Resistance Switching of Ag2S Nanoscale Ionic Conductor, ACS Nano 4
(2010) 2515-2522, https://doi.org/10.1021/nn100483a.
124. X. Tian, S. Yang, M. Zeng, L. Wang, J. Wei, Z. Xu, W. Wang, X. Bai,
Bipolar Electrochemical Mechanism for Mass Transfer in Nanoionic Resistive
Memories, Adv. Mater. 26 (2014) 3649-3654,
https://doi.org/10.1002/adma.201400127.
125. S. Gao, C. Song, C. Chen, F. Zeng, F. Pan, Formation process of conducting
filament in planar organic resistive memory, Appl. Phys. Lett. 102 (2013) 141606,
https://doi.org/10.1063/1.4802092.
126. J. Yang, M. Pickett, X. Li, Memristive switching mechanism for
metal/oxide/metal nanodevices, Nature Nanotech 3 (2008) 429-433,
https://doi.org/10.1038/nnano.2008.160.
127. C. Yoshida, K. Kinoshita, T. Yamasaki, Y. Sugiyama, Direct observation of
oxygen movement during resistance switching in NiO/Pt film, Appl. Phys. Lett. 93
(2008) 042106, https://doi.org/10.1063/1.2966141.
128. W. Banerjee, W. Cai, X. Zhao, Q. Liu, H. Lv, S. Long, M. Liu, Intrinsic
anionic rearrangement by extrinsic control: transition of RS and CRS in thermally
elevated TiN/HfO2/Pt RRAM, Nanoscale 9 (2017) 18908-18917,
https://doi.org/10.1039/C7NR06628G.
129. C. Chen, C. Song, J. Yang, F. Zeng, F. Pan , Oxygen migration induced
resistive switching effect and its thermal stability in W/TaOx/Pt structure, Appl.
Phys. Lett. 100 (2012) 253509, https://doi.org/10.1063/1.4730601.
130. W. Banerjee, High-k Al2O3/WOx bilayer dielectrics for low-power resistive
switching memory applications, Japanese Journal of Applied Physics 50 (2011)
10PH01, https://doi.org/10.7567/JJAP.50.10PH01.
131. S. Won, S. Lee, J. Park, H. Seo, Forming-less and Non-Volatile Resistive
Switching in WOx by Oxygen Vacancy Control at Interfaces, Sci Rep. 7 (2017)
10186, https://doi.org/10.1038/s41598-017-10851-8.
132. C. Chen, Y. Yang, F. Zeng, F. Pan, Bipolar resistive switching in Cu/AlN/Pt
nonvolatile memory device, Appl. Phys. Lett. 97 (2010) 083502,
https://doi.org/10.1063/1.3483158.
133. H. Kim, H. An, T. Kim, Ultrafast Resistive-Switching Phenomena Observed
in NiN-Based ReRAM Cells, IEEE Transactions on Electron Devices 59 (2012)
2302-2307, https://doi.org/10.1109/TED.2012.2202237.
134. J. Kim, C. Ko, A. Frenzel, S. Ramanathan, J. Hoffman, Nanoscale imaging
and control of resistance switching in VO2 at room temperature, Appl. Phys. Lett.
96 (2010) 213106, https://doi.org/10.1063/1.3435466.
135. X. Liu, S. Sadaf, M. Son, J. Shin, J. Park, J. Lee, S. Park, H. Hwang, Diodeless bilayer oxide (WO(x)-NbO(x)) device for cross-point resistive memory
applications, Nanotechnology 22 (2011) 475702, https://doi.org/10.1088/0957-
4484/22/47/475702.
136. F. Nakamura, M. Sakaki, Y. Yamanaka, Electric-field-induced metal
maintained by current of the Mott insulator Ca2RuO4, Sci Rep 3 (2013) 2536,
https://doi.org/10.1038/srep02536.
137. Y. Zhou, S. Ramanathan, Mott Memory and Neuromorphic Devices,
Proceedings of the IEEE 103 (2015) 1289-1310,
https://doi.org/10.1109/JPROC.2015.2431914.
138. K. Kim, D. Jeong, C. Hwang, Nanofilamentary resistive switching in binary
oxide system; a review on the present status and outlook, Nanotechnology 22
(2011) 254002, https://doi.org/10.1088/0957-4484/22/25/254002.
139. J. Chen, C. Hsin, C. Huang, C. Chiu, Dynamic Evolution of Conducting
Nanofilament in Resistive Switching Memories, Nano letters 13 (2013) 3671-
3677, https://doi.org/10.1021/nl4015638.
140. W. Banerjee, X. Xu, H. Lv, Q. Liu, S. Long, M. Liu, Adv. Electron. Mater. 3
(2017) 1700287, https://doi.org/10.1002/aelm.201700287.
141. X. Zhang, Q. Yu, Y. Yao, X. Li, Ultrafast resistive switching in SrTiO3:Nb
single crystal, Appl. Phys. Lett. 97 (2010) 222117,
https://doi.org/10.1063/1.3524216.
142. M. Hasan, R. Dong, H. Choi, D. Lee, D. Seong, M. Pyun, H. Hwang, Uniform
resistive switching with a thin reactive metal interface layer in metalLa0.7Ca0.3MnO3-metal heterostructures, Appl. Phys. Lett. 92 (2008) 202102,
https://doi.org/10.1063/1.2932148.
143. L. Liu, S. Zhang, Y. Luo, G. Yuan, J. Liu, J. Yin, Z. Liu, Coexistence of
unipolar and bipolar resistive switching in BiFeO3 and Bi0.8Ca0.2FeO3 films,
Journal of Applied Physics 111 (2012) 104103, https://doi.org/10.1063/1.4716867.
144. X. Zhao, S. Liu, J. Niu, L. Liao, Q. Liu, X. Xiao, H. Lv, Confining Cation
Injection to Enhance CBRAM Performance by Nanopore Graphene Layer, Small
13 (2017) 1603948, https://doi.org/10.1002/smll.201603948.
145. S. Liu, N. Lu, X. Zhao, H. Xu, W. Banerjee, H. Lv, S. Long, Q. Li, Q. Liu, M.
Liu, Eliminating Negative-SET Behavior by Suppressing Nanofilament
Overgrowth in Cation-Based Memory, Adv Mater. 28 (2016) 10623-10629,
https://doi.org/10.1002/adma.201603293.
146. F. Hui, E. Grustan-Gutierrez, S. Long, Q. Liu, A. Ott, A. Ferrari, M. Lanza,
2D Resistive Switching Memories: Graphene and Related Materials for Resistive
Random Access Memories, Adv. Electron. Mater. 3 (2017) 1600195,
https://doi.org/10.1002/aelm.201770032.
147. C. Pan, E. Miranda, M. Villena, N. Xiao, X. Jing, X. Xie, T. Wu, F. Hui, Y.
Shi, M. Lanza, Model for multi-filamentary conduction in graphene/hexagonal-boron-nitride/graphene based resistive switching devices, 2D Mater. 4 (2017)
025099, https://doi.org/10.1088/2053-1583/aa7129.
148. Z. Wu, X. Zhao, Y. Yang, Transformation of threshold volatile switching to
quantum point contact originated nonvolatile switching in graphene interface
controlled memory devices, Nanoscale Adv. 1 (2019) 3753-3760,
https://doi.org/10.1039/C9NA00409B.
149. Y. Bai, H. Wu, K. Wang, Stacked 3D RRAM Array with Graphene/CNT as
Edge Electrodes, Sci. Rep. 5 (2015) 13785, https://doi.org/10.1038/srep13785.
150. M. Cohen, Electronic Charge Densities in Semiconductors, Science 179
(1973) 1189-1195, http://www.jstor.org/stable/1735747.
151. P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Physical Review B
136 (1964) 864-871, https://doi.org/10.1103/PhysRev.136.B864.
152. W. Kohn, L. Sham, Self-Consistent Equations Including Exchange and
Correlation Effects, Physical Review A 140 (1965) 1133-1138,
https://doi.org/10.1103/PhysRev.140.A1133.
153. M. Yin, M. Cohen, Ground-state properties of diamond, Phys. Rev. B 24
(1981) 6121, https://doi.org/10.1103/PhysRevB.24.6121.
154. M. Yin, M. Cohen, Theory of static structural properties, crystal stability, and
phase transformations: Application to Si and Ge, Phys. Rev. B 26 (1982) 5668,
https://doi.org/10.1103/PhysRevB.26.5668.
155. O. Nielsen, R. Martin, First-Principles Calculation of Stress, Phys. Rev Lett.
50 (1983) 697, https://doi.org/10.1103/PhysRevLett.50.697.
156. D. Hamann, M. Schlüter, C. Chiang, Norm-Conserving Pseudopotentials,
Phys. Rev. Lett. 43 (1979) 1494, https://doi.org/10.1103/PhysRevLett.43.1494.
157. G. Bachelet, H. Greenside, G. Baraff, M. Schlüter, Structural-energy
calculations based on norm-conserving pseudopotentials and localized Gaussian
orbitals, Phys. Rev. B 24 (1981) 4745, https://doi.org/10.1103/PhysRevB.24.4745.
158. G. Bachelet, D. Hamann, M. Schluter, Pseudopotentials that work: from H to
Pu, Phys. Rev. B - Solid State 26 (1982) 4199-4228,
https://doi.org/10.1103/PhysRevB.26.4199.
159. A. Baldereschi, Mean-Value Point in the Brillouin Zone, Phys. Rev. B 7
(1973) 5212, https://doi.org/10.1103/PhysRevB.7.5212.
160. D. Chadi, M. Cohen, Special Points in the Brillouin Zone, Phys. Rev. B 8
(1973) 5747, https://doi.org/10.1103/PhysRevB.8.5747.
161. H. Monkhorst, J. Pack, Special points for Brillouin-zone integrations, Phys.
Rev. B 13 (1976) 5188, https://doi.org/10.1103/PhysRevB.13.5188.
162. G. Makov, R. Shah, M. Payne, Periodic boundary conditions in ab initio
calculations. II. Brillouin-zone sampling for aperiodic systems, Phys. Rev. B 53
(1996) 15513, https://doi.org/10.1103/PhysRevB.53.15513.
163. D. Chadi, P. Citrin, C. Park, D. Adler, M. Marcus, H. Gossmann, FermiLevel-Pinning Defects in Highly n-Doped Silicon, Phys. Rev. Lett. 79 (1997)
4834, https://doi.org/10.1103/PhysRevLett.79.4834.
164. M. Puska, S. Pöykkö, M. Pesola, R. Nieminen, Convergence of supercell
calculations for point defects in semiconductors: Vacancy in silicon, Phys. Rev. B
58 (1998) 1318, https://doi.org/10.1103/PhysRevB.58.1318.
165. J. Lento, J. Mozos, R. Nieminen, Charged point defects in semiconductors
and the supercell approximation, J. Phys.: Condens. Matter. 14 (2002) 2637-2645,
https://doi.org/10.1088/0953-8984/14/10/314.
166. R. Needs, First-principles calculations of self-interstitial defect structures and
diffusion paths in silicon, Journal of Physics: Condensed Matter 11 (1999) 10437,
https://doi.org/10.1088/0953-8984/11/50/332.
167. D. Drabold, J. Dow, P. Fedders, A. Carlsson, O. Sankey, Convergence of
force calculations for noncrystalline Si, Phys. Rev. B 42 (1990) 5345,
https://doi.org/10.1103/PhysRevB.42.5345.
168. S. Clark, G. Ackland, Ab initio calculations of the self-interstitial in silicon,
Phys. Rev. B 56 (1997) 47, https://doi.org/10.1103/PhysRevB.56.47.
169. J. Shim, E. Lee, Y. Lee, R. Nieminen, Density-functional calculations of
defect formation energies using the supercell method: Brillouin-zone sampling,
Phys. Rev. B 71 (2005) 245204, https://doi.org/10.1103/PhysRevB.71.245204.
170. J. Kohanoff, Electronic Structure Calculations for Solids and Molecules:
Theory and Computational Methods, Cambridge University Press (2006) 327,
https://doi.org/10.1017/CBO9780511755613.
171. G. Trimarchi, A. Zunger, Global space-group optimization problem: Finding
the stablest crystal structure without constraints, Phys. Rev. B 75 (2007) 04113,
https://doi.org/10.1103/PhysRevB.75.104113.
172. Ab initio calculation [Електронний ресурс] – Режим доступу до ресурсу:
http://sites.google.com/a/kdpu.edu.ua/calculationphysics.
173. Чернікова О. М. Моделі активації ковалентного зв’язування в реакціях
окислення наноструктурними каталізаторами: дис. ... канд. фіз.-мат. наук:
01.04.07. Київ, 2016. 134 с.
174. Кравцова Д. Ю. Електронна структура та фізико-хімічні властивості
мета- і наноматеріалів каталізаторами: дис. ... канд. фіз.-мат. наук: 01.04.07.
Одеса, 2018. 131 с.
175. Здещиц А. В. Електронні властивості гібридних наноструктур: дис. ...
канд. фіз.-мат. наук: 01.04.07. Одеса, 2019. 140 с.
176. Соломенко А. Г. Функціоналізація двовимірних напівпровідникових
матеріалів: дис. ... канд. фіз.-мат. наук: 01.04.07. Одеса, 2020. 107 с.
177. Прихожа Ю. О. Матеріали для анодів літій-іонних акумуляторів
матеріалів: дис. ... докт. філ. зі спец. 104: Фізика та астрономія. Кривий Ріг,
2021. 112 с.
178. Балабай Р. М. Особливості розподілу електронної густини в
нанорозмірних функціональних матеріалах: дис. ... док. фіз.-мат. наук:
01.04.07. Київ, 2014. 278 с.
179. Р. М. Балабай, П. В. Мерзликін, Електронні властивості легованих
плівок ZnO: розрахунок із перших принципів, Український фізичний журнал
55 (2010) 1130-1136.
180. Балабай Р. М. Обчислювальні методи із перших принципів у фізиці
твердого тіла: квантово-механічна молекулярна динаміка: монографія.
Кривий Ріг: Видавничий дім (2009) 124 с.
181. R. Balabai, A. Zdeshchyts, D. Zalevskyi, Electronic Properties of
Graphene/ZnO 2D-2D Heterocomposite, Semiconductor Physics, Quantum
Electronics And Optoelectronics 21 (2018) 65-72,
https://doi.org/10.15407/spqeo21.01.065.
182. R. Balabai, D. Zalevskyi, SiGe Epitaxial Films with Dislocations for the
Switchable Memory: the Accurate First-Principle Calculations, Physics and
Chemistry of Solid State 20 (2019) 247-256,
https://doi.org/10.15330/pcss.20.3.247-256.
183. R. Balabai, D. Zalevskyi, Properties of materials for resistive RAM based on
HfO2 (first principles calculations), Molecular Crystals and Liquid Crystals 700
(2020) 95-106, https://doi.org/10.1080/15421406.2020.1732556.
184. D. Zalevskyi, R. Balabai, Ab initio simulation of resistive memory based on
GeTe–Sb2Te3 alloys, Molecular Crystals and Liquid Crystals 719 (2021) 79-89,
https://doi.org/10.1080/15421406.2021.1905285.
185. J. Feldmann, N. Youngblood, C. Wright, All-optical spiking neurosynaptic
networks with self-learning capabilities, Nature 569 (2019) 208-214,
https://doi.org/10.1038/s41586-019-1157-8.
186. D. Ielmini, H. Wong, In-memory computing with resistive switching devices,
Nature Electronics 1 (2018) 333-343, https://doi.org/10.1038/s41928-018-0092-2.
187. M. Xu, B. Li, K. Xu, H. Tong, X. Cheng, M. Xu, X. Miao, Stabilizing
amorphous Sb by adding alien seeds for durable memory materials, Physical
Chemistry Chemical Physics 21 (2019) 4494,
https://doi.org/10.1039/C8CP07446A.
188. Y. Su, H. Liu, P. Chen, T. Chang, T. Tsai, T. Chu, A method to reduce
forming voltage without degrading device performance in hafnium oxide-based
1T1R resistive random access memory, IEEE Journal of the Electron Devices
Society 6 (2018) 341-345, https://doi.org/10.1109/jeds.2018.2805285.
189. S. Yu, B. Gao, Z. Fang, H. Yu, J. Kang, H. Wong, A neuromorphic visual
system using RRAM synaptic devices with sub-pJ energy and tolerance to
variability: experimental characterization and large-scale modeling, International
Electron Devices Meeting (2012), https://doi.org/10.1109/iedm.2012.6479018.
190. W. Banerjee, Q. Liu, H. Hwang, Engineering of defects in resistive random
access memory devices, Journal of Applied Physics 127 (2020) 051101,
https://doi.org/10.1063/1.5136264.
191. F. Zahoor, T. Azni Zulkifli, F. Khanday, Resistive Random Access Memory
(RRAM): an Overview of Materials, Switching Mechanism, Performance,
Multilevel Cell (mlc) Storage, Modeling, and Applications, Nanoscale Research
Letters 15 (2020) 90, https://doi.org/10.1186/s11671-020-03299-9.
192. X. Sun, Y. Guo, Y. Zhao, S. Liu, H. Li, Gas Adsorption Investigation on
SiGe Monolayer: A First-Principle Calculation, Sensors 20 (2020) 2879,
https://doi.org/10.3390/s20102879.
193. T. Tan, T. Guo, X. Chen, X. Li, Z. Liu, Impacts of Au-doping on the
performance of Cu/HfO2/Pt RRAM devices, Applied Surface Science 317 (2014)
982-985, https://doi.org/10.1016/j.apsusc.2014.09.027.
194. X. Liu, X. Geng, H. Liu, Recent Progress and Applications of HfO2-Based
Ferroelectric Memory, Tsinghua Science and Technology 28 (2023) 221-229,
https://doi.org/10.26599/TST.2021.9010096.
195. C. Song, H. Kwon, Ferroelectrics Based on HfO2 Film, Electronics 10 (2021)
2759, https://doi.org/10.3390/electronics10222759.
196. C. Mahata, M. Ismail, D. Kim, S. Kim, Quantized synaptic characteristics in
HfO2-nanocrystal based resistive switching memory, Journal of Materials Research
and Technology 21 (2022) 981-991, https://doi.org/10.1016/j.jmrt.2022.09.095.
197. F. Vaccaro, S. Brivio, S. Perotto, A. Mauri, S. Spiga, Physics-based compact
modelling of the analog dynamics of HfOx resistive memories, Neuromorphic
Computing and Engineering 2, (2022) 021003, https://doi.org/10.1088/2634-
4386/ac7327.
198. J. Han, B. Jeong, Y. Kim, J. Suh, H. Jeong, H. Kim, T. Yoon, Nonvolatile
memory characteristics associated with oxygen ion exchange in thin-film
transistors with indium-zinc oxide channel and HfO2-x gate oxide, Materials Today
Advances 15 (2022) 100264, https://doi.org/10.1016/j.mtadv.2022.100264.
199. D. Maldonado, C. Aguilera-Pedregosa, G. Vinuesa, H. García, S. Dueñas, H.
Castán, S. Aldana, M. González, E. Moreno, F. Jiménez-Molinos, F. Campabadal,
J. Roldán, An experimental and simulation study of the role of thermal effects on
variability in TiN/Ti/HfO2/W resistive switching nonlinear devices, Chaos,
Solitons & Fractals 160 (2022) 112247,
https://doi.org/10.1016/j.chaos.2022.112247.
200. J. Hmar, Non-volatile resistive switching memory device based on ZnOgraphene oxide embedded in a polymer matrix fabricated on a flexible PET
substrate, Microelectronic Engineering 233 (2020) 111436,
https://doi.org/10.1016/j.mee.2020.111436.
201. C. Hu, Q. Wang, S. Bai, M. Xu, D. He, D. Lyu, J. Qi, The effect of oxygen
vacancy on switching mechanism of ZnO resistive switching memory, Applied
Physics Letters 110 (2017) 073501, https://doi.org/10.1063/1.4976512.
202. I. Oh, J. Pyo, S. Kim, Resistive Switching and Synaptic Characteristics in
ZnO/TaON-Based RRAM for Neuromorphic System, Nanomaterials 12 (2022)
2185, https://doi.org/10.3390/nano12132185.
203. X. Wang, H. Qian, L. Guan, W. Wang, B. Xing, X. Yan, S. Zhang, J. Sha, Y.
Wang, Influence of metal electrode on the performance of ZnO based resistance
switching memories, Journal of Applied Physics 122 (2017) 154301,
https://doi.org/10.1063/1.4996975.
204. U. Isyaku, M. Khir, I. Nawi, M. Zakariya, F. Zahoor, ZnO Based Resistive
Random Access Memory Device: A Prospective Multifunctional Next-Generation
Memory, IEEE Access 9 (2021) 105012-105047,
https://doi.org/10.1109/ACCESS.2021.3098061.
205. C. Hu, Q. Wang, S. Bai, M. Xu, D. He, D. Lyu, J. Qi, The effect of oxygen
vacancy on switching mechanism of ZnO resistive switching memory, Appl. Phys.
Lett. 110 (2017) 073501, https://doi.org/10.1063/1.4976512.
206. T. Jiang, X. Wang, J. Wang, H. Zhang, L. Lu, C. Jia, M. Wuttig, R.
Mazzarello, W. Zhang, E. Ma, In situ characterization of vacancy ordering in GeSb-Te phase-change memory alloys, Fundamental Research (2022),
https://doi.org/10.1016/j.fmre.2022.09.010.
207. C. Qiao, Y. Guo, J. Wang, H. Shen, S. Wang, Y. Zheng, R. Zhang, L. Chen,
C. Wang, K. Ho, The local structural differences in amorphous Ge-Sb-Te alloys,
Journal of Alloys and Compounds 774 (2019) 748-757,
https://doi.org/10.1016/j.jallcom.2018.10.011.
208. L. Sun, Y. Zhou, X. Wang, Ab initio molecular dynamics and materials
design for embedded phase-change memory, npj Comput. Mater. 7 (2021) 29,
https://doi.org/10.1038/s41524-021-00496-7.
209. S. Cecchi, G. Lopez, A. Mio, E. Zallo, O. Abou El Kheir, R. Calarco, M.
Bernasconi, G. Nicotra, S. Privitera, Crystallization and Electrical Properties of
Ge-Rich GeSbTe Alloys, Nanomaterials 12 (2022) 631,
https://doi.org/10.3390/nano12040631.
210. D. Yimam, A. Van Der Ree, O. Abou El Kheir, J. Momand, M. Ahmadi, G.
Palasantzas, M. Bernasconi, B. Kooi, Phase Separation in Ge-Rich GeSbTe at
Different Length Scales: Melt-Quenched Bulk versus Annealed Thin Films,
Nanomaterials 12 (2022) 1717, https://doi.org/10.3390/nano12101717.
211. T. Anderson, B. Krause, Refinement of the Sb2Te3 and Sb2Te2Se structures
and their relationship to nonstoichiometric Sb2Te3-ySey compounds, Acta
Crystallographica Section B 30 (1974) 1307-1310, https://doi.org/
10.1107/S0567740874004729.
212. K. Moon, S. Lim, J. Park, C. Sung, S. Oh, J. Woo, J. Lee, H. Hwang, RRAMbased synapse devices for neuromorphic systems, Faraday Discuss. 213 (2019)
421-451, https://doi.org/10.1039/C8FD00127H.
213. W. Banerjee, Q. Liu, H. Lv, S. Long, M. Liu, Electronic imitation of
behavioral and psychological synaptic activities using TiOx/Al2O3-based memristor
devices, Nanoscale 9 (2017) 14442-14450, https://doi.org/10.1039/C7NR04741J.
214. D. Ielmini, Brain-inspired computing with resistive switching memory
(RRAM): Devices, synapses and neural networks, Microelectronic Engineering
190 (2018) 44-53, https://doi.org/10.1016/j.mee.2018.01.009.
215. Y. Li, Z. Wang, R. Midya, Q. Xia, J. Yang, Review of memristor devices in
neuromorphic computing: materials sciences and device challenges, Journal of
Physics D: Applied Physics 51 (2018) 503002, https://doi.org/10.1088/1361-
6463/aade3f.
216. D. Lee, M. Kwak, K. Moon, W. Choi, J. Park, J. Yoo, J. Song, S. Lim, C.
Sung, W. Banerjee, H. Hwang, Various Threshold Switching Devices for Integrate
and Fire Neuron Applications, Adv. Electron. Mater. 5 (2019) 1800866,
https://doi.org/10.1002/aelm.201800866.
217. G. Burr, R. Shelby, A. Sebastian, S. Kim, S. Kim, S. Sidler, K. Virwani, M.
Ishii, Neuromorphic computing using non-volatile memory, Advances in Physics:
X 2 (2017) 89-124, https://doi.org/10.1080/23746149.2016.1259585.
218. M. Lee, Y. Cui, T. Somu, T. Luo, J. Zhou, W. Tang, W. Wong, R. Goh, A
System-Level Simulator for RRAM-Based Neuromorphic Computing Chips, ACM
Trans. Archit. Code Optim. 15 (2019) 64, https://doi.org/10.1145/3291054.
219. Q. Wu, H. Wang, Q. Luo, W. Banerjee, J. Cao, X. Zhang, F. Wu, Q. Liu, L.
Li, M. Liu, Full imitation of synaptic metaplasticity based on memristor devices,
Nanoscale 10 (2018) 5875-5881, https://doi.org/10.1039/C8NR00222C.
220. A. Burg, A. Chattopadhyay, K. Lam, Wireless Communication and Security
Issues for Cyber-Physical Systems and the Internet-of-Things, Proceedings of the
IEEE 106 (2018) 38-60, https://doi.org/10.1109/JPROC.2017.2780172.
221. J. Rajendran, Nano Meets Security: Exploring Nanoelectronic Devices for
Security Applications, Proceedings of the IEEE 103 (2015) 829-849,
https://doi.org/10.1109/JPROC.2014.2387353.
222. R. Dong, D. Lee, W. Xiang, S. Oh, D. Seong, S. Heo, H. Choi, M. Kwon, S.
Seo, M. Pyun, M. Hasan, H. Hwang, Reproducible hysteresis and resistive
switching in metal-CuxO-metal heterostructures, Appl. Phys. Lett. 90 (2007)
042107, https://doi.org/10.1063/1.2436720.
223. W. Kim, S. Park, Z. Zhang, S. Wong, Current Conduction Mechanism of
Nitrogen-Doped AlOx RRAM, IEEE Transactions on Electron Devices 61 (2014)
2158-2163, https://doi.org/10.1109/TED.2014.2319074.
224. Q. Liu, Improvement of Resistive Switching Properties in ZrO2-Based
ReRAM With Implanted Ti Ions, IEEE Electron Device Letters 30 (2009) 1335-
1337, https://doi.org/10.1109/LED.2009.2032566.
225. S. Misha, N. Tamanna, J. Woo, S. Lee, J. Song, J. Park, S. Lim, J. Park, H.
Hwang, Effect of Nitrogen Doping on Variability of TaOx-RRAM for Low-Power
3-Bit MLC Applications, ECS Solid State Lett. 4 (2015) 25-28,
https://doi.org/10.1149/2.0011504ssl.
226. L. Chen, Enhancement of Resistive Switching Characteristics in Al2O3-Based
RRAM With Embedded Ruthenium Nanocrystals, IEEE Electron Device Letters
32 (2011) 794-796, https://doi.org/10.1109/LED.2011.2125774.
227. W. Banerjee, S. Maikap, S. Rahaman, A. Prakash, T. Tien, W. Li, J. Yang,
Improved resistive switching memory characteristics using core-shell IrOx nanodots in Al2O3/WOx bilayer structure, J. Electrochem. Soc. H 159 (2012) 177-182,
https://doi.org/10.1149/2.067202jes.
228. C. Cheng, P. Chen, Y. Wu, F. Yeh, A. Chin, Long-Endurance Nanocrystal
TiO2 Resistive Memory Using a TaON Buffer Layer, IEEE Electron Device
Letters 32 (2011) 1749-1751, https://doi.org/10.1109/LED.2011.2168939.
229. Y. Wang, Q. Liu, H. Lü, Improving the electrical performance of resistive
switching memory using doping technology, Chin. Sci. Bull. 57 (2012) 1235-1240,
https://doi.org/10.1007/s11434-011-4930-0.
230. W. Banerjee, S. Maikap, T. Tien, W. Li, J. Yang , Impact of metal nano layer
thickness on tunneling oxide and memory performance of core-shell iridium-oxide
nanocrystals, Journal of Applied Physics 110 (2011) 074309,
https://doi.org/10.1063/1.3642961.
231. W. Banerjee, S. Maikap, C. Lai, Y. Chen, T. Tien, H. Lee, W. Chen, F. Chen,
M. Kao, M. Tsai, J. Yang, Formation polarity dependent improved resistive
switching memory characteristics using nanoscale (1.3 nm) core-shell IrOx nanodots, Nanoscale research letters 7 (2012) 194, https://doi.org/10.1186/1556-276X7-194.
232. W. Chang, K. Cheng, J. Tsai, H. Chen, F. Chen, M. Tsai, T. Wu,
Improvement of resistive switching characteristics in TiO2 thin films with
embedded Pt nanocrystals, Appl. Phys. Lett. 95 (2009) 042104,
https://doi.org/10.1063/1.3193656.
233. M. Uenuma, K. Kawano, B. Zheng, N. Okamoto, M. Horita, S. Yoshii, I.
Yamashita, Y. Uraoka, Resistive random access memory utilizing ferritin protein
with Pt nanoparticles, Nanotechnol. 22 (2011) 215201,
https://doi.org/10.1088/0957-4484/22/21/215201.
234. J. Volatron, F. Carn, J. Kolosnjaj-Tabi, Y. Javed, Q. Vuong, Y. Gossuin, C.
Ménager, N. Luciani, G. Charron, M. Hémadi, D. Alloyeau, F. Gazeau, Ferritin
Protein Regulates the Degradation of Iron Oxide Nanoparticles, Small 13 (2016)
1602030, https://doi.org/10.1002/smll.201602030.
235. H. Hosein, D. Strongin, M. Allen, T. Douglas, Iron and Cobalt Oxide and
Metallic Nanoparticles Prepared from Ferritin, Langmuir 20 (2004) 10283-10287,
https://doi.org/10.1021/la0491100.
236. M. Okuda, K. Iwahori, I. Yamashita, H. Yoshimura, Fabrication of nickel and
chromium nanoparticles using the protein cage of apoferritin, Biotechnol. Bioeng.
84 (2003) 187-194, https://doi.org/10.1002/bit.10748.
237. S. Lyu, J. Lee, Highly scalable resistive switching memory cells using poresize-controlled nanoporous alumina templates, J. Mater. Chem. 22 (2011) 1852-
1861, https://doi.org/10.1039/C1JM14592D.
238. H. Kim, M. Yun, S. Hong, T. Kim, Effect of nanopyramid bottom electrodes
on bipolar resistive switching phenomena in nickel nitride films-based crossbar
arrays, Nanotechnology 25 (2014) 125201, https://doi.org/10.1088/0957-
4484/25/12/125201.
239. Y. Huang, W. Tsai, C. Chou, C. Wan, C. Hsiao, H. Cheng, High-Performance
Programmable Metallization Cell Memory With the Pyramid-Structured Electrode,
IEEE Electron Device Letters 34 (2013) 1244-1246,
https://doi.org/10.1109/LED.2013.2275851.
240. S. Otsuka, T. Shimizu, S. Shingubara, K. Makihara, S. Miyazaki, A.
Yamasaki, Y. Tanimoto, K. Takase, Effect of electric field concentration using
nanopeak structures on the current-voltage characteristics of resistive switching
memory, AIP Advances 4 (2014) 087110, https://doi.org/10.1063/1.4892823.
241. Z. Wang, K. Zhao, H. Xu, L. Zhang, J. Ma, Y. Liu, Improvement of resistive
switching memory achieved by using arc-shaped bottom electrode, Appl. Phys.
Express 8 (2015) 014101, https://doi.org/10.7567/APEX.8.014101.
242. H. Shin, J. Park, H. Chung, K. Kim, H. Kim, T. Kim, Highly uniform resistive
switching in SiN nanorod devices fabricated by nanosphere lithography, Appl.
Phys. Express 7 (2014) 024202, https://doi.org/10.7567/APEX.7.024202.
243. Y. Zhang, G. Mao, X. Zhao, Evolution of the conductive filament system in
HfO2-based memristors observed by direct atomic-scale imaging, Nat. Commun.
12 (2021) 7232, https://doi.org/10.1038/s41467-021-27575-z.
244. L. Li, K. Xue, J. Yuan, G. Mao, X. Miao, Hafnia for analog memristor:
Influence of stoichiometry and crystalline structure, Phys. Rev. Materials 6 (2022)
084603, https://doi.org/10.1103/PhysRevMaterials.6.084603.
245. N. Kaiser, T. Vogel, A. Zintler, S. Petzold, A. Arzumanov, E. Piros, R.
Eilhardt, L. Molina-Luna, L. Alff, Defect-Stabilized Substoichiometric
Polymorphs of Hafnium Oxide with Semiconducting Properties, ACS Appl. Mater.
Interfaces 14 (2021) 1290-1303, https://doi.org/10.1021/acsami.1c09451.
246. J. Zhang, Pressure-Induced Novel Compounds in the Hf-O System from
First-Principles Calculations, Phys. Rev. B 92 (2015) 184104,
https://doi.org/10.1103/PhysRevB.92.184104.