Description:
Abrahim, G.M.S. & Parker R.J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from
tamaki estuary, Auckland, New Zealand. Environ. Monit. Assess., 136,
227‒238. DOI: 10.1007/s10661-007-9678-2.
Alfaro, M.R., Montero, A., Ugarte, O.M., do Nascimento, C.W.A., de Aguiar
Accioly, A.M., Biondi, C.M. & da Silva Y.J.A.B. (2015). Background concentrations and reference values for heavy metals in soils of Cuba. Environ. Monit. Assess., 187, 4198. DOI: 10.1007/s10661-014-4198-3.
Ander, E.L., Johnson, C.C., Cave, M.R., Palumbo-Roe, B., Nathanail, C.P. &
Lark R.M. (2013). Methodology for the determination of normal background concentrations of contaminants in English soil. Sci. Total Environ., 454‒455, 604‒618. DOI: 10.1016/j.scitotenv.2013.03.005.
Angst, G., Mueller, C.W., Angst, S., Pivokonsky, M., Franklin, J., Stahl, P.D.
& Frouz J. (2018). Fast accrual of C and N in soil organic matter fractions
following post-mining reclamation across the USA. J. Environ. Manag.,
209, 216‒226. DOI: 10.1016/j.jenvman.2017.12.050.
August, T., Moore, P., Roy, H. & Dick J. (2021). Visual storytelling using National Capability data. UK Centre for Ecology & Hydrology (UKCEH Project:
06948; NERC National Capability LTS-S: UK-SCAPE; NE/R016429/1).
Baghaie, A.H. & Aghili F. (2019). Investigation of heavy metals concentration
in soil around a Pb Zn mine and ecological risk assessment. Environmental Health Engineering and Management Journal, 6(3), 151‒156. DOI:
10.15171/EHEM.2019.17.
Bielyk, Y., Savosko, V., Lykholat, Y., Heilmeier, H. & Grygoryuk I. (2020). Macronutrients and heavy metals contents in the leaves of trees from the devastated lands at Kryvyi Rih District (Central Ukraine). E3S Web of Conferences, 166, 01011. DOI: 10.1051/e3sconf/202016601011.
Bulmer, M.G. (1979). Principles of statistics. New York: Dover Publications Inc.
de Lima, H.M. & Mendanha F.O. (2019). Assessment of the effects of vegetational cover on the long-term stability of a waste rock dump. REM
- International Egineering Journal, 72(4), 667‒674. DOI: 10.1590/0370-
44672018720176.
de San Miguel, V., Stone, T., Braimbridge M. & Mackenzie S. (2019). Roy Hill
waste landform design and construction process. In Proceedings of the 13th
International Conference on Mine Closure (pp. 407-418). 3‒5 September
2019. Perth: Australian Centre for Geomechanics. DOI: 10.36487/ACG_
rep/1915_33_Braimbridge.
Demkova, L., Jezny, T. & Bobuľska L. (2017). Assessment of soil heavy metal
pollution in a former mining area – before and after the end of mining
activities. Soil and Water Research, 12, 229‒236. DOI: 10.17221/107/2016-
SWR.
Dolezalova Weissmannova, H. & Pavlovsky J. (2017). Indices of soil contamination by heavy metals – methodology of calculation for pollution assessment (minireview). Environ. Monit. Asses., 189, 616. DOI: 10.1007/
s10661-017-6340-5.
Fazekas, J., Fazekasova, D., Hronec, O., Benkova, E. & Boltiziar M. (2018).
Contamination of soil and vegetation at a magne site mining area in
Jelsava-Lubenik (Slovakia). Ekológia (Bratislava), 37(2), 101‒111. DOI:
10.2478/eko-2018-0010.
Gryshko, V.M., Syshchykov, D.V., Piskova, O.M., Danilchuk, O.V. & Mashtaler
N.V. (2012). Heavy metals: entering to soil, translocation in plants and ecological danger (in Ukrainian). Donetsk: Donbas.
Gwenzi, W. (2021). Rethinking restoration indicators and end-points for severely degraded post-mining landscapes in light of novel ecosystems. Geoderma, 387(1), 14944. DOI: 10.13140/RG.2.2.32972.03208.
Hakanson, L. (1980). An ecological risk index for aquatic pollution control a sedimentological approach. Water Res., 14(8), 975‒1001. DOI:
10.1016/0043-1354(80)90143-8.
Holtra, A. & Zamorska-Wojdyla D. (2020). The pollution indices of trace elements in soils and plants close to the copper and zinc smelting works in
Poland’s Lower Silesia. Environ. Sci. Pollut. Res., 27, 16086‒16099. DOI:
10.1007/s11356-020-08072-0.
International Organization for Standardization (2015). Soil quality - Pretreatment of samples for physico-chemical analysis (ISO Standard No. 11464-
2015). Geneva: International Organization for Standardization. https://
www.iso.org/standard/37718.html.
International Organization for Standardization (2018). Soil quality - Sampling
Part 203: Investigation of potentially contaminated sites (ISO Standard No.
ISO 18400-203:2018). Geneva: International Organization for Standardization. https://www.iso.org/standard/65226.html.
IUSS Working Group WRB (2015). World reference base for soil resources 2014,
update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. Rome:
FAO.
Izakovicova, Z. & Petrovic F. (2018). Integrated approach to ustainable
land use management. Environments, 5(3), 37. DOI: 10.3390/environments5030037.
Kabata-Pendias, A. (2011). Trace elements from soils to plants. Boca Raton:
CRS Press, Francis & Taylor Group.
Kowalska, J.B., Mazurek, R., Gąsiorek, M. & Zaleski T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil
contamination – a review. Environ. Geochem. Health, 40. 2395‒2420. DOI:
10.1007/s10653-018-0106-z.
Lacy, H.W.B. (2019). Mine landforms in Western Australia from dump to
landform design: review, reflect and a future direction. In Proceedings of
the 13th International Conference on Mine Closure (pp. 371‒384). 3‒5 September 2019. Perth: Australian Centre for Geomechanics. DOI: 10.36487/
ACG_rep/1915_30_Lacy.
Loska, K., Wiechulab, D. & Korus I. (2004). Metal contamination of farming
soils affected by industry. Environ. In., 30, 159‒165. DOI: 10.1016/S0160-
4120(03)00157-0.
Maus, V., Giljum, S., Gutschlhofer, J., da Silva, D.M., Probst, M., Gass, S.L.B.,
Luckeneder, S., Lieber, M. & McCallum I. (2020). A global-scale data set of
mining areas. Scientific Data, 7, 289. DOI: 10.1038/s41597-020-00624-w.
Mazurek, M., Kowalska, J., Gasiorek, M., Zadrozny, P., Jozefowska, A., Zaleski,
T., Kepka, W., Tymczuk, M. & Orłowska K. (2017). Assessment of heavy
metals contamination in surface layers of Roztocze National Park forest
soils (SE Poland) by indices of pollution. Chemosphere, 168, 839‒850.
DOI: 10.1016/j.chemosphere.2016.10.126.
McDonald, J.H. (2014). Handbook of biolological statistics. Baltimore: Sparky
House Publishing.
Mhlongo, S.E., Amponsah-Dacosta, F. & Kadyamatimba A. (2019). Development and application of a methodological tool for prioritization of rehabilitation of abandoned tailings dumps in the Giyani and
Musina areas of South Africa. Cogent Engineering, 6(1), 1619894. DOI:
10.1080/23311916.2019.1619894.
Muller, G. (1969). Index of geo-accumulation in sediments of the Rhine River.
Geojournal, 2, 108‒118.
Pansu, M. & Jacques G. (2006). Handbook of soil analysis. Berlin: Springer.
Polupan, М.І., Solovej, V.B. & Velichko V.A. (2005). Classification of soils at
Ukraine (in Ukrainian). Kyiv: Agrarian Science.
Raizada, A. & Dhyani S.K. (2020). Agroforestry approach for the rehabilitation of mine spoils. In J.C. Dagar, S.R. Gupta & D. Teketay (Eds.), Agroforestry for degraded landscapes (pp. 271‒295). Singapore: Springer. DOI:
10.1007/978-981-15-6807-7_9.
Savosko, V., Bielyk, Y., Lykholat, Y., Heilmeier, H., Grygoryuk, I., Khromykh,
N. & Lykholat T. (2021). The total content of macronutrients and heavy
metals in the soil on devastated lands at Kryvyi Rih Iron Mining & Metallurgical District (Ukraine). Journal of Geology, Geography and Geoecology,
30(1), 153‒164. DOI: 10.15421/112114.
Savosko, V., Lykholat, Y., Domshyna, K. & Lykholat T. (2018). Ecological and
geological determination of trees and shrubs’ dispersal on the devastated
lands at Kryvorizhya (in Ukrainian). Journal of Geology, Geography and
Geoecology, 27(1), 116‒130. DOI: 10.15421/111837.
Savosko, V., Podolyak, A., Komarova, I. & Karpenko A. (2020a). Modern environmental technologies of healthy soils contaminated by heavy metals
and radionuclides. E3S Web of Conferences, 166, 01007. DOI: 10.1051/
e3sconf/202016601007.
Savosko, V., Tovstolyak, N., Lykholat, Y. & Grygoryuk, I. (2020b). Structure
and diversity of urban park stands at Kryvyi Rih ore-mining & metallurgical district, central Ukraine. Agriculture and Forestry, 66(3), 105‒126. DOI:
10.17707/AgricultForest.66.3.10.
Savosko, V.M. (2010). Genesis and morphology of the primitive soils in technological landscapes at Kryvbas (in Russian). Problems of Bioindication
and Ecology, 15(2), 152‒162.
Savosko, V.M. & Alekseeva K.M. (2007). The systematical analyses of the natural dendroflora in Govtneviy region at Kryvyi Rih (in Russian). Problems
of Bioindication and Ecology, 12(2), 16‒23.
Savosko, V.M., Nevyadomsky, M.A. & Kudriava P.Y. (2010). The substrates’s
physical and chemical properties of the mine tailings ponds at Kryvbas (in
Russian). Problems of Bioindication and Ecology, 15(1), 88‒89.
Savosko, V.M. & Tovstolyak N.V. (2017). Ecological conditions of garden and
park territories of former iron mines (Kryvyi Rih Basin, Ukraine) (in
Ukrainian). Ukrainian Journal of Ecology, 7(4), 12‒17.
Savosko, V.N. (2016). Heavy metals in soils at Kryvbas (in Russian). Kryvyi Rih:
Dionat.
Sediva, A. & Izakovicova Z. (2015). Assessment of representative landscape
types of Skalica District. Ekológia (Bratislava), 34(4), 329–338. DOI:
10.1515/eko-2015-0030.
Sinnett, D.E. & Sardo A.M. (2020). Former metal mining landscapes in England and Wales: Five perspectives from local residents. Landsc. Urban
Plann., 193, 103685. DOI: 10.1016/j.landurbplan.2019.103685.
Soil Survey Staff (2014). Keys to soil taxonomy. Washington: USDA-Natural
Resources Conservation Service.
211
Sparks, D.L. (2002). Environmental soil chemistry. San Diego: Academic Press.
Stanturf, J.A., Callaham, M.A. & Madsen P. (2021). Landscape degradation and
restoration. In J.A. Stanturf & M.A. Callaham (Eds.), Soils and landscape
restoration (pp. 1‒37). New York: Academic Press. DOI: 10.1016/b978-0-
12-813193-0.00001-1.
Sutherland, R.A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Geol., 39, 611‒627. DOI: 10.1007/
s002540050473.
Tomlinson, D.L., Wilson, J.C., Harris, C.R. & Jeffrey D.W. (1980). Problems in
the assessment of heavy-metal levels in estuaries and the formation of a
pollutant index. Helgol. Wiss. Meeresunters., 33, 566‒575.
Urminska, J., Toth, T., Benda Prokeinova, R. & Ondrisik P. (2019). The effect
of the selected remediation medium on the cadmium bioavailability in
the selected ecosystem in the Southwestern locality of Slovakia. Ekológia
(Bratislava), 38(3), 214‒224. DOI: 10.2478/eko-2019-0017.
van der Sluis, T., Arts, B., Kok, K., Bogers, M., Busck, Anne G.K., Sepp,
K., Loupa-Ramos, I., Pavlis, V., Geamana, N. & Crouzat E. (2019).
Drivers of European landscape change: stakeholders’ perspectives
through Fuzzy Cognitive Mapping. Landsc. Res., 44(4), 458‒476. DOI:
10.1080/01426397.2018.1446074.
Vriens, B., Plante, B., Seigneur, N. & Jamieson H. (2020). Mine waste rock: insights for sustainable hydrogeochemical management. Minerals, 10, 728.
DOI: 10.3390/min10090728.
Yi, Q. & Cheng H. (2019). Review of heavy metal pollution by mining. E3S Web
of Conferences, 118, 04028. DOI: 10.1051/e3sconf/201911804028.
Zhukov, O., Kunah, O., Fedushko, M., Babchenko, A. & Umerova A. (2021).
Response to moisture dynamic in technosols formed after reclamation at a
postmining site in Ukrainian steppe drylands. Ekológia (Bratislava), 40(2),
178‒188. DOI: 10.2478/eko-2021-0020.
Zverkovskyy, V.M., Sytnyk, S.A., Lovynska, V.M., Kharytonov, M.M., Lakyda,
I.P., Mykolenko, S.Yu., Pardini, G., Margui, E. & Gispert M. (2018). Remediation potential of forest forming tree species within Northern Steppe
reclamation stands. Ekológia (Bratislava), 37(1), 69‒81. DOI: 10.2478/eko2018-0007.