DSpace Repository

Assessment of heavy metals concentration in initial soils of post-mining landscapes in Kryvyi Rih District (Ukraine)

Show simple item record

dc.contributor.author Савосько, Василь Миколайович
dc.contributor.author Бєлик, Юлія Віліївна
dc.contributor.author Лихолат, Юрій Васильович
dc.contributor.author Heilmeir, Hermann
dc.date.accessioned 2022-10-20T13:01:58Z
dc.date.available 2022-10-20T13:01:58Z
dc.date.issued 2022
dc.identifier.citation Savosko, V., Bielyk, Y., Lykholat, Y. & Heilmeier, H. (2022). Assesment of heavy metals concentration in initial soils of post-mining landscapes in Kryvyi Rih District (Ukraine). Ekológia (Bratislava), 41(3), 201-211. https://doi.org/10.2478/eko-2022-0020 uk
dc.identifier.uri http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/6705
dc.identifier.uri https://doi.org/10.2478/eko-2022-0020
dc.description Abrahim, G.M.S. & Parker R.J. (2008). Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from tamaki estuary, Auckland, New Zealand. Environ. Monit. Assess., 136, 227‒238. DOI: 10.1007/s10661-007-9678-2. Alfaro, M.R., Montero, A., Ugarte, O.M., do Nascimento, C.W.A., de Aguiar Accioly, A.M., Biondi, C.M. & da Silva Y.J.A.B. (2015). Background concentrations and reference values for heavy metals in soils of Cuba. Environ. Monit. Assess., 187, 4198. DOI: 10.1007/s10661-014-4198-3. Ander, E.L., Johnson, C.C., Cave, M.R., Palumbo-Roe, B., Nathanail, C.P. & Lark R.M. (2013). Methodology for the determination of normal background concentrations of contaminants in English soil. Sci. Total Environ., 454‒455, 604‒618. DOI: 10.1016/j.scitotenv.2013.03.005. Angst, G., Mueller, C.W., Angst, S., Pivokonsky, M., Franklin, J., Stahl, P.D. & Frouz J. (2018). Fast accrual of C and N in soil organic matter fractions following post-mining reclamation across the USA. J. Environ. Manag., 209, 216‒226. DOI: 10.1016/j.jenvman.2017.12.050. August, T., Moore, P., Roy, H. & Dick J. (2021). Visual storytelling using National Capability data. UK Centre for Ecology & Hydrology (UKCEH Project: 06948; NERC National Capability LTS-S: UK-SCAPE; NE/R016429/1). Baghaie, A.H. & Aghili F. (2019). Investigation of heavy metals concentration in soil around a Pb Zn mine and ecological risk assessment. Environmental Health Engineering and Management Journal, 6(3), 151‒156. DOI: 10.15171/EHEM.2019.17. Bielyk, Y., Savosko, V., Lykholat, Y., Heilmeier, H. & Grygoryuk I. (2020). Macronutrients and heavy metals contents in the leaves of trees from the devastated lands at Kryvyi Rih District (Central Ukraine). E3S Web of Conferences, 166, 01011. DOI: 10.1051/e3sconf/202016601011. Bulmer, M.G. (1979). Principles of statistics. New York: Dover Publications Inc. de Lima, H.M. & Mendanha F.O. (2019). Assessment of the effects of vegetational cover on the long-term stability of a waste rock dump. REM - International Egineering Journal, 72(4), 667‒674. DOI: 10.1590/0370- 44672018720176. de San Miguel, V., Stone, T., Braimbridge M. & Mackenzie S. (2019). Roy Hill waste landform design and construction process. In Proceedings of the 13th International Conference on Mine Closure (pp. 407-418). 3‒5 September 2019. Perth: Australian Centre for Geomechanics. DOI: 10.36487/ACG_ rep/1915_33_Braimbridge. Demkova, L., Jezny, T. & Bobuľska L. (2017). Assessment of soil heavy metal pollution in a former mining area – before and after the end of mining activities. Soil and Water Research, 12, 229‒236. DOI: 10.17221/107/2016- SWR. Dolezalova Weissmannova, H. & Pavlovsky J. (2017). Indices of soil contamination by heavy metals – methodology of calculation for pollution assessment (minireview). Environ. Monit. Asses., 189, 616. DOI: 10.1007/ s10661-017-6340-5. Fazekas, J., Fazekasova, D., Hronec, O., Benkova, E. & Boltiziar M. (2018). Contamination of soil and vegetation at a magne site mining area in Jelsava-Lubenik (Slovakia). Ekológia (Bratislava), 37(2), 101‒111. DOI: 10.2478/eko-2018-0010. Gryshko, V.M., Syshchykov, D.V., Piskova, O.M., Danilchuk, O.V. & Mashtaler N.V. (2012). Heavy metals: entering to soil, translocation in plants and ecological danger (in Ukrainian). Donetsk: Donbas. Gwenzi, W. (2021). Rethinking restoration indicators and end-points for severely degraded post-mining landscapes in light of novel ecosystems. Geoderma, 387(1), 14944. DOI: 10.13140/RG.2.2.32972.03208. Hakanson, L. (1980). An ecological risk index for aquatic pollution control a sedimentological approach. Water Res., 14(8), 975‒1001. DOI: 10.1016/0043-1354(80)90143-8. Holtra, A. & Zamorska-Wojdyla D. (2020). The pollution indices of trace elements in soils and plants close to the copper and zinc smelting works in Poland’s Lower Silesia. Environ. Sci. Pollut. Res., 27, 16086‒16099. DOI: 10.1007/s11356-020-08072-0. International Organization for Standardization (2015). Soil quality - Pretreatment of samples for physico-chemical analysis (ISO Standard No. 11464- 2015). Geneva: International Organization for Standardization. https:// www.iso.org/standard/37718.html. International Organization for Standardization (2018). Soil quality - Sampling Part 203: Investigation of potentially contaminated sites (ISO Standard No. ISO 18400-203:2018). Geneva: International Organization for Standardization. https://www.iso.org/standard/65226.html. IUSS Working Group WRB (2015). World reference base for soil resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. Rome: FAO. Izakovicova, Z. & Petrovic F. (2018). Integrated approach to ustainable land use management. Environments, 5(3), 37. DOI: 10.3390/environments5030037. Kabata-Pendias, A. (2011). Trace elements from soils to plants. Boca Raton: CRS Press, Francis & Taylor Group. Kowalska, J.B., Mazurek, R., Gąsiorek, M. & Zaleski T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination – a review. Environ. Geochem. Health, 40. 2395‒2420. DOI: 10.1007/s10653-018-0106-z. Lacy, H.W.B. (2019). Mine landforms in Western Australia from dump to landform design: review, reflect and a future direction. In Proceedings of the 13th International Conference on Mine Closure (pp. 371‒384). 3‒5 September 2019. Perth: Australian Centre for Geomechanics. DOI: 10.36487/ ACG_rep/1915_30_Lacy. Loska, K., Wiechulab, D. & Korus I. (2004). Metal contamination of farming soils affected by industry. Environ. In., 30, 159‒165. DOI: 10.1016/S0160- 4120(03)00157-0. Maus, V., Giljum, S., Gutschlhofer, J., da Silva, D.M., Probst, M., Gass, S.L.B., Luckeneder, S., Lieber, M. & McCallum I. (2020). A global-scale data set of mining areas. Scientific Data, 7, 289. DOI: 10.1038/s41597-020-00624-w. Mazurek, M., Kowalska, J., Gasiorek, M., Zadrozny, P., Jozefowska, A., Zaleski, T., Kepka, W., Tymczuk, M. & Orłowska K. (2017). Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution. Chemosphere, 168, 839‒850. DOI: 10.1016/j.chemosphere.2016.10.126. McDonald, J.H. (2014). Handbook of biolological statistics. Baltimore: Sparky House Publishing. Mhlongo, S.E., Amponsah-Dacosta, F. & Kadyamatimba A. (2019). Development and application of a methodological tool for prioritization of rehabilitation of abandoned tailings dumps in the Giyani and Musina areas of South Africa. Cogent Engineering, 6(1), 1619894. DOI: 10.1080/23311916.2019.1619894. Muller, G. (1969). Index of geo-accumulation in sediments of the Rhine River. Geojournal, 2, 108‒118. Pansu, M. & Jacques G. (2006). Handbook of soil analysis. Berlin: Springer. Polupan, М.І., Solovej, V.B. & Velichko V.A. (2005). Classification of soils at Ukraine (in Ukrainian). Kyiv: Agrarian Science. Raizada, A. & Dhyani S.K. (2020). Agroforestry approach for the rehabilitation of mine spoils. In J.C. Dagar, S.R. Gupta & D. Teketay (Eds.), Agroforestry for degraded landscapes (pp. 271‒295). Singapore: Springer. DOI: 10.1007/978-981-15-6807-7_9. Savosko, V., Bielyk, Y., Lykholat, Y., Heilmeier, H., Grygoryuk, I., Khromykh, N. & Lykholat T. (2021). The total content of macronutrients and heavy metals in the soil on devastated lands at Kryvyi Rih Iron Mining & Metallurgical District (Ukraine). Journal of Geology, Geography and Geoecology, 30(1), 153‒164. DOI: 10.15421/112114. Savosko, V., Lykholat, Y., Domshyna, K. & Lykholat T. (2018). Ecological and geological determination of trees and shrubs’ dispersal on the devastated lands at Kryvorizhya (in Ukrainian). Journal of Geology, Geography and Geoecology, 27(1), 116‒130. DOI: 10.15421/111837. Savosko, V., Podolyak, A., Komarova, I. & Karpenko A. (2020a). Modern environmental technologies of healthy soils contaminated by heavy metals and radionuclides. E3S Web of Conferences, 166, 01007. DOI: 10.1051/ e3sconf/202016601007. Savosko, V., Tovstolyak, N., Lykholat, Y. & Grygoryuk, I. (2020b). Structure and diversity of urban park stands at Kryvyi Rih ore-mining & metallurgical district, central Ukraine. Agriculture and Forestry, 66(3), 105‒126. DOI: 10.17707/AgricultForest.66.3.10. Savosko, V.M. (2010). Genesis and morphology of the primitive soils in technological landscapes at Kryvbas (in Russian). Problems of Bioindication and Ecology, 15(2), 152‒162. Savosko, V.M. & Alekseeva K.M. (2007). The systematical analyses of the natural dendroflora in Govtneviy region at Kryvyi Rih (in Russian). Problems of Bioindication and Ecology, 12(2), 16‒23. Savosko, V.M., Nevyadomsky, M.A. & Kudriava P.Y. (2010). The substrates’s physical and chemical properties of the mine tailings ponds at Kryvbas (in Russian). Problems of Bioindication and Ecology, 15(1), 88‒89. Savosko, V.M. & Tovstolyak N.V. (2017). Ecological conditions of garden and park territories of former iron mines (Kryvyi Rih Basin, Ukraine) (in Ukrainian). Ukrainian Journal of Ecology, 7(4), 12‒17. Savosko, V.N. (2016). Heavy metals in soils at Kryvbas (in Russian). Kryvyi Rih: Dionat. Sediva, A. & Izakovicova Z. (2015). Assessment of representative landscape types of Skalica District. Ekológia (Bratislava), 34(4), 329–338. DOI: 10.1515/eko-2015-0030. Sinnett, D.E. & Sardo A.M. (2020). Former metal mining landscapes in England and Wales: Five perspectives from local residents. Landsc. Urban Plann., 193, 103685. DOI: 10.1016/j.landurbplan.2019.103685. Soil Survey Staff (2014). Keys to soil taxonomy. Washington: USDA-Natural Resources Conservation Service. 211 Sparks, D.L. (2002). Environmental soil chemistry. San Diego: Academic Press. Stanturf, J.A., Callaham, M.A. & Madsen P. (2021). Landscape degradation and restoration. In J.A. Stanturf & M.A. Callaham (Eds.), Soils and landscape restoration (pp. 1‒37). New York: Academic Press. DOI: 10.1016/b978-0- 12-813193-0.00001-1. Sutherland, R.A. (2000). Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environ. Geol., 39, 611‒627. DOI: 10.1007/ s002540050473. Tomlinson, D.L., Wilson, J.C., Harris, C.R. & Jeffrey D.W. (1980). Problems in the assessment of heavy-metal levels in estuaries and the formation of a pollutant index. Helgol. Wiss. Meeresunters., 33, 566‒575. Urminska, J., Toth, T., Benda Prokeinova, R. & Ondrisik P. (2019). The effect of the selected remediation medium on the cadmium bioavailability in the selected ecosystem in the Southwestern locality of Slovakia. Ekológia (Bratislava), 38(3), 214‒224. DOI: 10.2478/eko-2019-0017. van der Sluis, T., Arts, B., Kok, K., Bogers, M., Busck, Anne G.K., Sepp, K., Loupa-Ramos, I., Pavlis, V., Geamana, N. & Crouzat E. (2019). Drivers of European landscape change: stakeholders’ perspectives through Fuzzy Cognitive Mapping. Landsc. Res., 44(4), 458‒476. DOI: 10.1080/01426397.2018.1446074. Vriens, B., Plante, B., Seigneur, N. & Jamieson H. (2020). Mine waste rock: insights for sustainable hydrogeochemical management. Minerals, 10, 728. DOI: 10.3390/min10090728. Yi, Q. & Cheng H. (2019). Review of heavy metal pollution by mining. E3S Web of Conferences, 118, 04028. DOI: 10.1051/e3sconf/201911804028. Zhukov, O., Kunah, O., Fedushko, M., Babchenko, A. & Umerova A. (2021). Response to moisture dynamic in technosols formed after reclamation at a postmining site in Ukrainian steppe drylands. Ekológia (Bratislava), 40(2), 178‒188. DOI: 10.2478/eko-2021-0020. Zverkovskyy, V.M., Sytnyk, S.A., Lovynska, V.M., Kharytonov, M.M., Lakyda, I.P., Mykolenko, S.Yu., Pardini, G., Margui, E. & Gispert M. (2018). Remediation potential of forest forming tree species within Northern Steppe reclamation stands. Ekológia (Bratislava), 37(1), 69‒81. DOI: 10.2478/eko2018-0007.
dc.description.abstract Assessment of heavy metals content in the initial soils of the post-mining landscapes plays an important role in pollution control, ecological protection, and safe-guarding human health. In this study, the site-specific pedogeochemical background contents of several metals in soils in Kryvyi Rih Iron Ore Mining & Metallurgical District (central part of Ukraine) were determined. The metal concentrations in the soils of Petrovsky waste rock dump were also quantified and were also assessed using indices of pollution. The field sampling was carried out at a depth of 0-10 cm in five plots in dump area and in one plot in control site. The 43 soil samples were collected. The results showed that local background concentrations of heavy metals in soils of studied area decreased in the following order (mg×kg-1): Fe (42 510) > Mn (761.7) > Cr (94.48) > Zn (90.51) > > As (31.85) > Cu (28.10) > Pb (18.73) > Co (16.21) > Sn (4.64) > Mo (0.28) > Cd (0.16). In the initial soils of devastated lands at Petrovsky waste rock dumps the predominance of increased Cd, Co, Fe, Mm, Mo and Sn content and the predominance of  decreased As, Cr and Pb content were observed. Based on the mean values of the individual indices of pollution (Pollution index, Geoaccumulation index, Enrichment factor, Contamination factor) can be assumed that in these soils As, Cd, Fe, Mo, Pb and Sn are mostly coming from industrial activities. Co, Cr, Cu, Mn and Zn are mostly related to their natural occurrence in devastated lands. The values of  integrated indices of pollution (Nemerow pollution index, Pollution load index, Degree of contaminated, Modified degree of contamination) indicated that the initial soils of post-mining landscapes can be evaluated as no polluted ­– and extremely heavy polluted. uk
dc.description.uri https://doi.org/10.2478/eko-2022-0020
dc.language.iso en uk
dc.subject landscape ecology uk
dc.subject devastated lands uk
dc.subject indices of pollution uk
dc.subject iron ore mining area uk
dc.subject waste rock dumps uk
dc.subject heavy metals uk
dc.subject initial soils uk
dc.subject post-mining landscapes uk
dc.subject ecological protection uk
dc.subject Kryvyi Rih District uk
dc.title Assessment of heavy metals concentration in initial soils of post-mining landscapes in Kryvyi Rih District (Ukraine) uk
dc.type Article uk


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics