Description:
1. Brownlee, J.: A Gentle Introduction to the Rectified Linear Unit (ReLU). Machine Learning
Mastery. https://machinelearningmastery.com/rectified-linear-activation-function-fordeep-learning-neural-networks/ (2019). Accessed 25 Oct 2019
2. Brownlee, J.: A Tour of Machine Learning Algorithms. Machine Learning Mastery.
https://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/ (2019).
Accessed 25 Oct 2019
1. Chollet, F.: Deep Learning with Python. Manning, Shelter Island (2017)
2. Courville, A., Goodfellow, I., Bengio, Y.: Deep Learning. MIT Press, Cambridge (2016)
3. Dechter, R.: Learning while searching in constraint-satisfaction-problems. In: AAAI-86
Proceedings The Fifth National Conference on Artificial Intelligence, August 11–15, 1986,
in Philadelphia, Pennsylvania., pp. 178–183. https://aaai.org/Papers/AAAI/1986/AAAI86-
029.pdf (1986). Accessed 17 Aug 2019
4. Fukushima, K.: Neocognitron: A self-organizing neural network model for a mechanism of
pattern recognition unaffected by shift in position. Biological Cybernetics 36, 193–202
(1980). doi:10.1007/BF00344251
5. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Las Vegas, 27–30 June 2016, pp. 770–778. IEEE (2015). doi:10.1109/CVPR.2016.90
6. Ivakhnenko, A.G., Lapa, V.G.: Cybernetics and forecasting techniques. American Elsevier
Publ. Co., New York (1967)
7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep
convolutional neural networks. Communications of the ACM 60(6), 84–90 (2017).
doi:10.1145/3065386
8. Laves, M.H., Ihler, S., Ortmaier, T.: Deformable Medical Image Registration Using a
Randomly-Initialized CNN as Regularization Prior. In: Medical Imaging with Deep
Learning 2019. https://openreview.net/pdf?id=S1ehZFQ15E (2019). Accessed 25 Oct 2019
9. Pang, S., Du, A., Orgun, M.A., Yu, Z.: A novel fused convolutional neural network for
biomedical image classification. Medical & Biological Engineering & Computing 57, 107–
121 (2019). doi:10.1007/s11517-018-1819-y
10. Semerikov, S.O., Teplytskyi, I.O., Yechkalo, Yu.V., Kiv, A.E.: Computer Simulation of
Neural Networks Using Spreadsheets: The Dawn of the Age of Camelot. In: Kiv, A.E.,
Soloviev, V.N. (eds.) Proceedings of the 1st International Workshop on Augmented Reality
in Education (AREdu 2018), Kryvyi Rih, Ukraine, October 2, 2018. CEUR Workshop
Proceedings 2257, 122–147. http://ceur-ws.org/Vol-2257/paper14.pdf (2018). Accessed 30
Nov 2018
11. Semerikov, S.O., Teplytskyi, I.O., Yechkalo, Yu.V., Kiv, A.E.: Computer Simulation of
Neural Networks Using Spreadsheets: The Dawn of the Age of Camelot. In: Kiv, A.E.,
Soloviev, V.N. (eds.) Proceedings of the 1st International Workshop on Augmented Reality
in Education (AREdu 2018), Kryvyi Rih, Ukraine, October 2, 2018. CEUR Workshop
Proceedings 2257, 122–147. http://ceur-ws.org/Vol-2257/paper14.pdf (2018). Accessed 30
Nov 2018
12. Semerikov, S.O., Teplytskyi, I.O.: Metodyka uvedennia osnov Machine learning u
shkilnomu kursi informatyky (Methods of introducing the basics of Machine learning in the
school course of informatics). In: Problems of informatization of the educational process in
institutions of general secondary and higher education, Ukrainian scientific and practical
conference, Kyiv, October 09, 2018, pp. 18–20. Vyd-vo NPU imeni M. P. Drahomanova,
Kyiv (2018)
13. Semerikov, S.O.: Zastosuvannia metodiv mashynnoho navchannia u navchanni
modeliuvannia maibutnikh uchyteliv khimii (The use of machine learning methods in
teaching modeling future chemistry teachers). In: Starova, T.V. (ed.) Technologies of
teaching chemistry at school and university, Ukrainian Scientific and Practical Internet
Conference, Kryvyi Rih, November 2018, pp. 10–19. KDPU, Kryvyi Rih (2018)
14. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image
Recognition. In: International Conference on Learning Representations.
https://www.robots.ox.ac.uk/~vgg/publications/2015/Simonyan15/simonyan15.pdf (2015).
Accessed 25 Oct 2019
15. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke,
V., Rabinovich, A.: Going Deeper with Convolutions. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), Boston, 7–12 July 2015,
pp. 1–9. IEEE (2015). doi:10.1109/CVPR.2015.7298594
16. Theart, R.: Getting started with PyTorch for Deep Learning (Part 3: Neural Network basics).
Code to Light. https://codetolight.wordpress.com/2017/11/29/getting-started-with-pytorchfor-deep-learning-part-3-neural-network-basics/ (2017). Accessed 25 Oct 2019