DSpace Repository

Convolutional neural networks for image classification

Show simple item record

dc.contributor.author Tarasenko, Andrii O.
dc.contributor.author Yakimov, Yuriy V.
dc.contributor.author Соловйов, Володимир Миколайович
dc.date.accessioned 2020-02-18T12:22:32Z
dc.date.available 2020-02-18T12:22:32Z
dc.date.issued 2020-02-09
dc.identifier.citation Tarasenko A. O. Convolutional neural networks for image classification [Electronic resource] / Andrii O. Tarasenko, Yuriy V. Yakimov, Vladimir N. Soloviev // Computer Science & Software Engineering : Proceedings of the 2nd Student Workshop (CS&SE@SW 2019), Kryvyi Rih, Ukraine, November 29, 2019 / Edited by : Arnold E. Kiv, Serhiy O. Semerikov, Vladimir N. Soloviev, Andrii M. Striuk. – P. 101-114. – (CEUR Workshop Proceedings (CEUR-WS.org), Vol. 2546). – Access mode : http://ceur-ws.org/Vol-2546/paper06.pdf uk_UA
dc.identifier.issn 1613-0073
dc.identifier.uri http://ceur-ws.org/Vol-2546/paper06.pdf
dc.identifier.uri http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/3682
dc.identifier.uri https://doi.org/10.31812/123456789/3682
dc.description 1. Brownlee, J.: A Gentle Introduction to the Rectified Linear Unit (ReLU). Machine Learning Mastery. https://machinelearningmastery.com/rectified-linear-activation-function-fordeep-learning-neural-networks/ (2019). Accessed 25 Oct 2019 2. Brownlee, J.: A Tour of Machine Learning Algorithms. Machine Learning Mastery. https://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/ (2019). Accessed 25 Oct 2019 1. Chollet, F.: Deep Learning with Python. Manning, Shelter Island (2017) 2. Courville, A., Goodfellow, I., Bengio, Y.: Deep Learning. MIT Press, Cambridge (2016) 3. Dechter, R.: Learning while searching in constraint-satisfaction-problems. In: AAAI-86 Proceedings The Fifth National Conference on Artificial Intelligence, August 11–15, 1986, in Philadelphia, Pennsylvania., pp. 178–183. https://aaai.org/Papers/AAAI/1986/AAAI86- 029.pdf (1986). Accessed 17 Aug 2019 4. Fukushima, K.: Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics 36, 193–202 (1980). doi:10.1007/BF00344251 5. He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition. In: In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, 27–30 June 2016, pp. 770–778. IEEE (2015). doi:10.1109/CVPR.2016.90 6. Ivakhnenko, A.G., Lapa, V.G.: Cybernetics and forecasting techniques. American Elsevier Publ. Co., New York (1967) 7. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Communications of the ACM 60(6), 84–90 (2017). doi:10.1145/3065386 8. Laves, M.H., Ihler, S., Ortmaier, T.: Deformable Medical Image Registration Using a Randomly-Initialized CNN as Regularization Prior. In: Medical Imaging with Deep Learning 2019. https://openreview.net/pdf?id=S1ehZFQ15E (2019). Accessed 25 Oct 2019 9. Pang, S., Du, A., Orgun, M.A., Yu, Z.: A novel fused convolutional neural network for biomedical image classification. Medical & Biological Engineering & Computing 57, 107– 121 (2019). doi:10.1007/s11517-018-1819-y 10. Semerikov, S.O., Teplytskyi, I.O., Yechkalo, Yu.V., Kiv, A.E.: Computer Simulation of Neural Networks Using Spreadsheets: The Dawn of the Age of Camelot. In: Kiv, A.E., Soloviev, V.N. (eds.) Proceedings of the 1st International Workshop on Augmented Reality in Education (AREdu 2018), Kryvyi Rih, Ukraine, October 2, 2018. CEUR Workshop Proceedings 2257, 122–147. http://ceur-ws.org/Vol-2257/paper14.pdf (2018). Accessed 30 Nov 2018 11. Semerikov, S.O., Teplytskyi, I.O., Yechkalo, Yu.V., Kiv, A.E.: Computer Simulation of Neural Networks Using Spreadsheets: The Dawn of the Age of Camelot. In: Kiv, A.E., Soloviev, V.N. (eds.) Proceedings of the 1st International Workshop on Augmented Reality in Education (AREdu 2018), Kryvyi Rih, Ukraine, October 2, 2018. CEUR Workshop Proceedings 2257, 122–147. http://ceur-ws.org/Vol-2257/paper14.pdf (2018). Accessed 30 Nov 2018 12. Semerikov, S.O., Teplytskyi, I.O.: Metodyka uvedennia osnov Machine learning u shkilnomu kursi informatyky (Methods of introducing the basics of Machine learning in the school course of informatics). In: Problems of informatization of the educational process in institutions of general secondary and higher education, Ukrainian scientific and practical conference, Kyiv, October 09, 2018, pp. 18–20. Vyd-vo NPU imeni M. P. Drahomanova, Kyiv (2018) 13. Semerikov, S.O.: Zastosuvannia metodiv mashynnoho navchannia u navchanni modeliuvannia maibutnikh uchyteliv khimii (The use of machine learning methods in teaching modeling future chemistry teachers). In: Starova, T.V. (ed.) Technologies of teaching chemistry at school and university, Ukrainian Scientific and Practical Internet Conference, Kryvyi Rih, November 2018, pp. 10–19. KDPU, Kryvyi Rih (2018) 14. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale Image Recognition. In: International Conference on Learning Representations. https://www.robots.ox.ac.uk/~vgg/publications/2015/Simonyan15/simonyan15.pdf (2015). Accessed 25 Oct 2019 15. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going Deeper with Convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, 7–12 July 2015, pp. 1–9. IEEE (2015). doi:10.1109/CVPR.2015.7298594 16. Theart, R.: Getting started with PyTorch for Deep Learning (Part 3: Neural Network basics). Code to Light. https://codetolight.wordpress.com/2017/11/29/getting-started-with-pytorchfor-deep-learning-part-3-neural-network-basics/ (2017). Accessed 25 Oct 2019
dc.description.abstract This paper shows the theoretical basis for the creation of convolutional neural networks for image classification and their application in practice. To achieve the goal, the main types of neural networks were considered, starting from the structure of a simple neuron to the convolutional multilayer network necessary for the solution of this problem. It shows the stages of the structure of training data, the training cycle of the network, as well as calculations of errors in recognition at the stage of training and verification. At the end of the work the results of network training, calculation of recognition error and training accuracy are presented. uk_UA
dc.language.iso en uk_UA
dc.publisher Arnold E. Kiv, Serhiy O. Semerikov, Vladimir N. Soloviev, Andrii M. Striuk uk_UA
dc.subject machine learning uk_UA
dc.subject deep learning uk_UA
dc.subject neural network uk_UA
dc.subject recognition uk_UA
dc.subject convolutional neural network uk_UA
dc.subject artificial intelligence uk_UA
dc.title Convolutional neural networks for image classification uk_UA
dc.type Article uk_UA


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics