Description:
1. Arloon: Arloon Chemistry. https://play.google.com/store/apps/details
?id=com.Arloon.Chemistry.AR (2017). Accessed 31 Dec 2017.
2. Artırılmı¸s Ger¸ceklik Element Kartları: AR Bilim Kartları (Augmented
Reality Element Cards: AR Science Cards). Ders Zamanı Yayınları
(2017).
3. Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., MacIntyre,
B.: Recent Advances in Augmented Reality. IEEE Computer Graphics
and Applications. 21 (6), 34–47 (2001).
4. Azuma, R. T.: A Survey of Augmented Reality. Presence:
Teleoperators and Virtual Environments. 6 (4), 355–385 (1997).
doi: 10.1162/pres.1997.6.4.355
5. Cai, S., Wang, X., Chiang, F.-K.: A case study of Augmented
Reality simulation system application in a chemistry
course. Computers in Human Behavior. 37, 31–40 (2014).
doi: https://doi.org/10.1016/j.chb.2014.04.018
6. DAQRI: Elements 4D by DAQRI. https://play.google.com/store
/apps/details?id=com.daqri.elements4dbydaqri&utm_source=www.
apk4fun.com (2013). Accessed 31 Dec 2017.
7. D´askalos: D´askalos Chemistry: interactive science teacher for augmented
reality. https://prefrontalcortex.de/labs/daskalos/periodicSystem.pdf
(2015). Accessed 25 Dec 2017.
8. EligoVision: EV Toolbox. http://evtoolbox.ru/ (2018). Accessed 30
Jan 2018.
9. Fjeld, M., Fredriksson, J., Ejdestig, M., Duca, F., Botschi, K.,
Voegtli, B., Juchli, P.: Tangible user interface for chemistry education:
comparative evaluation and re-design. In: CHI’07: Proceedings
of the SIGCHI conference on Human factors in computing
systems, San Jose, April 28 — May 3 2007, pp. 805–808 (2007).
doi: 10.1145/1240624.1240745
10. Hryshchenko, M. (ed.): Nova ukrainska shkola: kontseptualni
zasady reformuvannia serednoi shkoly (New Ukrainian
School: Conceptual Principles for Reforming the
Secondary School). Ministerstvo osvity i nauky Ukrayiny.
https://mon.gov.ua/storage/app/media/zagalna%20serednya/novaukrainska-shkola-compressed.pdf (2016). Accessed 28 June 2017.
11. Iordache, D. D., Pribeanu, C., Balog, A.: Influence of specific
AR capabilities on the learning effectiveness and efficiency.
Studies in Informatics and Control. 21 (3), 233–240 (2012).
doi: 10.24846/v21i3y201201
12. Larngear Technology: Atomic Structure AR Learning Gear.
http://larngeartech.com/products/atomic-structure-ar-learning-gear/
(2012). Accessed 31 Dec 2017.
13. Maier, P., Klinker, G.: Augmented chemical reactions: An augmented
reality tool to support chemistry teaching. In: Proceedings 2013
2nd Experiment@ International Conference (exp.at’13), University
of Coimbra, Coimbra, 18–20 Sept. 2013, pp. 164–165 (2013).
doi: 10.1109/ExpAt.2013.6703055
14. Maier, P., T¨onnis, M., Klinker, G.: Dynamics in Tangible Chemical
Reactions. World Academy of Science, Engineering and Technology
International Journal of Chemical and Molecular Engineering. 3 (9),
442–448 (2009).
15. McCormack, P.: Augmented Reality. Innovative Education.org.
http://www.innovativeeducation.org/blog/augmented-reality (2014).
Accessed 29 Jan 2018.
16. Medina, E., Chen, Y.-C., Weghorst, S.: Understanding Biochemistry
with Augmented reality. In: Montgomerie, C., Seale, J. (eds.)
Proceedings of ED–MEDIA 2007 — World Conference on Educational
Multimedia, Hypermedia & Telecommunications, Vancouver, 25 Jun
2007, pp. 4235–4239. Association for the Advancement of Computing
in Education (AACE), Waynesville (2007).
17. MEL Science: MEL Chemistry. https://melscience.com/en/app/ (2018).
Accessed 19 Jan 2018.
18. Modlo, E. O., Echkalo, Yu. V., Semerikov, S. O., Tkachuk, V. V.:
Vykorystannia tekhnolohii dopovnenoi realnosti u mobilno
oriientovanomu seredovyshchi navchannia VNZ (Using technology of
augmented reality in a mobile-based learning environment of the higher
educational institution). Naukovi zapysky, Seriia: Problemy metodyky
fizyko-matematychnoi i tekhnolohichnoi osvity. 11 (1), 93–100 (2017).
19. Musio, B., Mariani, F., Sliwi´nski, E. P., Kabeshov, M. A., Odajima, ´
H., Ley, S. V.: Combination of Enabling Technologies to Improve and
Describe the Stereoselectivity of Wolff–Staudinger Cascade Reaction.
Synthesis. 48 (20), 3515–3526 (2016).
20. Nechypurenko, P. P., Semerikov, S. O., Selivanova, T. V, Shenayeva,
T. O.: Information and communication tools for pupils’ research
competence formation at chemistry profile learning. Information
Technologies and Learning Tools. 56 (6), 10–29 (2016).
21. Nechypurenko, P. P., Semerikov, S. O., Tomilina, L. I.: Teoretykometodychni zasady vykorystannia informatsiino-komunikatsiinykh
tekhnolohii yak zasobu formuvannia doslidnytskykh kompetentnostei
starshoklasnykiv u profilnomu navchanni khimii (Theoretical and
methodical foundations of using ICT as a tools of forming the
senior pupils’ research competencies in the chemistry profile learning).
Publishing Department of the SIHE “Kryvyi Rih National University”,
Kryvyi Rih (2018). 22. Nechypurenko, P. P., Semerikov, S. O.: VlabEmbed — the New Plugin
Moodle for the Chemistry Education. In: Ermolayev, V., Bassiliades, N.,
Fill, H.-G., Yakovyna, V., Mayr, H. C., Kharchenko, V., Peschanenko,
V., Shyshkina, M., Nikitchenko, M., Spivakovsky, A. (eds.) ICT
in Education, Research and Industrial Applications. Integration,
Harmonization and Knowledge Transfer 2017, 13th International
Conference on ICT in Education, Research and Industrial Applications.
Integration, Harmonization and Knowledge Transfer (ICTERI, 2017),
Kyiv, Ukraine, 15–18 May 2017. CEUR Workshop Proceedings (CEUR–
WS.org), vol. 1844, pp. 319–326 (2017).
23. N´u˜nez, M., Quir´os, R., N´u˜nez, I., Carda, J. B., Camahort, E.:
Collaborative Augmented Reality for Inorganic Chemistry Education.
In: EE’08 Proceedings of the 5th WSEAS/IASME international
conference on Engineering education, Heraklion, 22–24 July 2008,
pp. 271–277. World Scientific and Engineering Academy and Society
(WSEAS), Stevens Point (2008).
24. Pasar´eti, O., Hajd´u, H., Matuszka, T., J´ambori, A., Moln´ar,
I., Turcs´anyi-Szab´o M.: Augmented Reality in education.
In: INFODIDACT Informatika Szakm´odszertani Konferencia.
http://people.inf.elte.hu/tomintt/infodidact_2011.pdf (2011).
Accessed 17 Jan 2018.
25. Semerikov, S., Teplytskyi, I., Shokaliuk, S.: Mobilne navchannia:
istoriia, teoriia, metodyka (Mobile learning: history, theory, methodic).
Informatyka ta informatsiini tekhnolohii v navchalnykh zakladakh. 6,
72–82 (2008).
26. Semerikov, S., Teplytskyi, I., Shokaliuk, S.: Mobilne navchannia:
istoriia, teoriia, metodyka (Mobile learning: history, theory, methodic).
Informatyka ta informatsiini tekhnolohii v navchalnykh zakladakh. 1,
96–104 (2009).
27. Singhal, S., Bagga, S., Goyal, P., Saxena V.: Augmented Chemistry:
Interactive Education System. International Journal of Computer
Applications. 49 (15), 1–5 (2012). doi: 10.5120/7700-1041
28. Sliwinski, E. P., Kabeshov, M. A., Ley, S. V.: HTMoL — AR plugin: A
web-based interactive 3D molecular viewer with Augmented Reality &
Holographic Display. GitHub. https://github.com/es605/HTMoLAR
(2018). Accessed 21 Jan 2018. 29. StudyMarvel AR: StudyMarvel — Chemistry AR.
https://play.google.com/store/apps/details?id=com.StudyMarvelAR.
ImmersiveChemistryAR (2016). Accessed 31 Dec 2017.
30. Ta¸cgin, Z., Ulu¸cay, N., Oz¨ua˘g, E.: Designing and Developing an ¨
Augmented Reality Application: A Sample of Chemistry Education.
Journal of the Turkish Chemical Society, Section C: Chemical Education.
1 (1), 147–164 (2016).
31. Tintisha Technologies: AR Learning. http://www.arlearning.co.uk/
#about (2018). Accessed 21 Jan 2018.
32. Tuli, N., Mantri, A.: Augmented Reality as Teaching
Aid: Making Chemistry Interactive. Journal of Engineering
Education Transformations. Special Issue, Jan, 187–191 (2015).
doi: http://dx.doi.org/10.16920/jeet%2F2015%2Fv0i0%2F59624
33. Virtual Space LLC: AR VR Molecules Editor Free.
https://play.google.com/store/apps/details?id=com.vspaces.molb_free
(2017). Accessed 25 Dec 2017.
34. Wojciechowski, R., Cellary, W.: Evaluation of learners’ attitude toward
learning in ARIES augmented reality environments. Computers &
Education. 68, 570–585 (2013). doi: 10.1016/j.compedu.2013.02.014