DSpace Repository

Use of Augmented Reality in Chemistry Education

Show simple item record

dc.contributor.author Нечипуренко, Павло Павлович
dc.contributor.author Старова, Тетяна Валеріївна
dc.contributor.author Селіванова, Тетяна Валеріївна
dc.contributor.author Томіліна, Анна Олександрівна
dc.contributor.author Учитель, Олександр Давидович
dc.date.accessioned 2020-01-01T15:52:05Z
dc.date.available 2020-01-01T15:52:05Z
dc.date.issued 2018
dc.identifier.citation Nechypurenko P. P. Use of Augmented Reality in Chemistry Education / Pavlo P. Nechypurenko, Tetiana V. Starova, Tetiana V. Selivanova, Anna O. Tomilina, Aleksandr D. Uchitel // Педагогiка вищої та середньої школи. – 2018. – Випуск 51. – C. 25-36. – DOI : 10.31812/pedag.v51i0.3650 uk_UA
dc.identifier.issn 2304-4470
dc.identifier.uri http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/3579
dc.identifier.uri https://doi.org/10.31812/pedag.v51i0.3650
dc.description 1. Arloon: Arloon Chemistry. https://play.google.com/store/apps/details ?id=com.Arloon.Chemistry.AR (2017). Accessed 31 Dec 2017. 2. Artırılmı¸s Ger¸ceklik Element Kartları: AR Bilim Kartları (Augmented Reality Element Cards: AR Science Cards). Ders Zamanı Yayınları (2017). 3. Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., MacIntyre, B.: Recent Advances in Augmented Reality. IEEE Computer Graphics and Applications. 21 (6), 34–47 (2001). 4. Azuma, R. T.: A Survey of Augmented Reality. Presence: Teleoperators and Virtual Environments. 6 (4), 355–385 (1997). doi: 10.1162/pres.1997.6.4.355 5. Cai, S., Wang, X., Chiang, F.-K.: A case study of Augmented Reality simulation system application in a chemistry course. Computers in Human Behavior. 37, 31–40 (2014). doi: https://doi.org/10.1016/j.chb.2014.04.018 6. DAQRI: Elements 4D by DAQRI. https://play.google.com/store /apps/details?id=com.daqri.elements4dbydaqri&utm_source=www. apk4fun.com (2013). Accessed 31 Dec 2017. 7. D´askalos: D´askalos Chemistry: interactive science teacher for augmented reality. https://prefrontalcortex.de/labs/daskalos/periodicSystem.pdf (2015). Accessed 25 Dec 2017. 8. EligoVision: EV Toolbox. http://evtoolbox.ru/ (2018). Accessed 30 Jan 2018. 9. Fjeld, M., Fredriksson, J., Ejdestig, M., Duca, F., Botschi, K., Voegtli, B., Juchli, P.: Tangible user interface for chemistry education: comparative evaluation and re-design. In: CHI’07: Proceedings of the SIGCHI conference on Human factors in computing systems, San Jose, April 28 — May 3 2007, pp. 805–808 (2007). doi: 10.1145/1240624.1240745 10. Hryshchenko, M. (ed.): Nova ukrainska shkola: kontseptualni zasady reformuvannia serednoi shkoly (New Ukrainian School: Conceptual Principles for Reforming the Secondary School). Ministerstvo osvity i nauky Ukrayiny. https://mon.gov.ua/storage/app/media/zagalna%20serednya/novaukrainska-shkola-compressed.pdf (2016). Accessed 28 June 2017. 11. Iordache, D. D., Pribeanu, C., Balog, A.: Influence of specific AR capabilities on the learning effectiveness and efficiency. Studies in Informatics and Control. 21 (3), 233–240 (2012). doi: 10.24846/v21i3y201201 12. Larngear Technology: Atomic Structure AR Learning Gear. http://larngeartech.com/products/atomic-structure-ar-learning-gear/ (2012). Accessed 31 Dec 2017. 13. Maier, P., Klinker, G.: Augmented chemical reactions: An augmented reality tool to support chemistry teaching. In: Proceedings 2013 2nd Experiment@ International Conference (exp.at’13), University of Coimbra, Coimbra, 18–20 Sept. 2013, pp. 164–165 (2013). doi: 10.1109/ExpAt.2013.6703055 14. Maier, P., T¨onnis, M., Klinker, G.: Dynamics in Tangible Chemical Reactions. World Academy of Science, Engineering and Technology International Journal of Chemical and Molecular Engineering. 3 (9), 442–448 (2009). 15. McCormack, P.: Augmented Reality. Innovative Education.org. http://www.innovativeeducation.org/blog/augmented-reality (2014). Accessed 29 Jan 2018. 16. Medina, E., Chen, Y.-C., Weghorst, S.: Understanding Biochemistry with Augmented reality. In: Montgomerie, C., Seale, J. (eds.) Proceedings of ED–MEDIA 2007 — World Conference on Educational Multimedia, Hypermedia & Telecommunications, Vancouver, 25 Jun 2007, pp. 4235–4239. Association for the Advancement of Computing in Education (AACE), Waynesville (2007). 17. MEL Science: MEL Chemistry. https://melscience.com/en/app/ (2018). Accessed 19 Jan 2018. 18. Modlo, E. O., Echkalo, Yu. V., Semerikov, S. O., Tkachuk, V. V.: Vykorystannia tekhnolohii dopovnenoi realnosti u mobilno oriientovanomu seredovyshchi navchannia VNZ (Using technology of augmented reality in a mobile-based learning environment of the higher educational institution). Naukovi zapysky, Seriia: Problemy metodyky fizyko-matematychnoi i tekhnolohichnoi osvity. 11 (1), 93–100 (2017). 19. Musio, B., Mariani, F., Sliwi´nski, E. P., Kabeshov, M. A., Odajima, ´ H., Ley, S. V.: Combination of Enabling Technologies to Improve and Describe the Stereoselectivity of Wolff–Staudinger Cascade Reaction. Synthesis. 48 (20), 3515–3526 (2016). 20. Nechypurenko, P. P., Semerikov, S. O., Selivanova, T. V, Shenayeva, T. O.: Information and communication tools for pupils’ research competence formation at chemistry profile learning. Information Technologies and Learning Tools. 56 (6), 10–29 (2016). 21. Nechypurenko, P. P., Semerikov, S. O., Tomilina, L. I.: Teoretykometodychni zasady vykorystannia informatsiino-komunikatsiinykh tekhnolohii yak zasobu formuvannia doslidnytskykh kompetentnostei starshoklasnykiv u profilnomu navchanni khimii (Theoretical and methodical foundations of using ICT as a tools of forming the senior pupils’ research competencies in the chemistry profile learning). Publishing Department of the SIHE “Kryvyi Rih National University”, Kryvyi Rih (2018). 22. Nechypurenko, P. P., Semerikov, S. O.: VlabEmbed — the New Plugin Moodle for the Chemistry Education. In: Ermolayev, V., Bassiliades, N., Fill, H.-G., Yakovyna, V., Mayr, H. C., Kharchenko, V., Peschanenko, V., Shyshkina, M., Nikitchenko, M., Spivakovsky, A. (eds.) ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer 2017, 13th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer (ICTERI, 2017), Kyiv, Ukraine, 15–18 May 2017. CEUR Workshop Proceedings (CEUR– WS.org), vol. 1844, pp. 319–326 (2017). 23. N´u˜nez, M., Quir´os, R., N´u˜nez, I., Carda, J. B., Camahort, E.: Collaborative Augmented Reality for Inorganic Chemistry Education. In: EE’08 Proceedings of the 5th WSEAS/IASME international conference on Engineering education, Heraklion, 22–24 July 2008, pp. 271–277. World Scientific and Engineering Academy and Society (WSEAS), Stevens Point (2008). 24. Pasar´eti, O., Hajd´u, H., Matuszka, T., J´ambori, A., Moln´ar, I., Turcs´anyi-Szab´o M.: Augmented Reality in education. In: INFODIDACT Informatika Szakm´odszertani Konferencia. http://people.inf.elte.hu/tomintt/infodidact_2011.pdf (2011). Accessed 17 Jan 2018. 25. Semerikov, S., Teplytskyi, I., Shokaliuk, S.: Mobilne navchannia: istoriia, teoriia, metodyka (Mobile learning: history, theory, methodic). Informatyka ta informatsiini tekhnolohii v navchalnykh zakladakh. 6, 72–82 (2008). 26. Semerikov, S., Teplytskyi, I., Shokaliuk, S.: Mobilne navchannia: istoriia, teoriia, metodyka (Mobile learning: history, theory, methodic). Informatyka ta informatsiini tekhnolohii v navchalnykh zakladakh. 1, 96–104 (2009). 27. Singhal, S., Bagga, S., Goyal, P., Saxena V.: Augmented Chemistry: Interactive Education System. International Journal of Computer Applications. 49 (15), 1–5 (2012). doi: 10.5120/7700-1041 28. Sliwinski, E. P., Kabeshov, M. A., Ley, S. V.: HTMoL — AR plugin: A web-based interactive 3D molecular viewer with Augmented Reality & Holographic Display. GitHub. https://github.com/es605/HTMoLAR (2018). Accessed 21 Jan 2018. 29. StudyMarvel AR: StudyMarvel — Chemistry AR. https://play.google.com/store/apps/details?id=com.StudyMarvelAR. ImmersiveChemistryAR (2016). Accessed 31 Dec 2017. 30. Ta¸cgin, Z., Ulu¸cay, N., Oz¨ua˘g, E.: Designing and Developing an ¨ Augmented Reality Application: A Sample of Chemistry Education. Journal of the Turkish Chemical Society, Section C: Chemical Education. 1 (1), 147–164 (2016). 31. Tintisha Technologies: AR Learning. http://www.arlearning.co.uk/ #about (2018). Accessed 21 Jan 2018. 32. Tuli, N., Mantri, A.: Augmented Reality as Teaching Aid: Making Chemistry Interactive. Journal of Engineering Education Transformations. Special Issue, Jan, 187–191 (2015). doi: http://dx.doi.org/10.16920/jeet%2F2015%2Fv0i0%2F59624 33. Virtual Space LLC: AR VR Molecules Editor Free. https://play.google.com/store/apps/details?id=com.vspaces.molb_free (2017). Accessed 25 Dec 2017. 34. Wojciechowski, R., Cellary, W.: Evaluation of learners’ attitude toward learning in ARIES augmented reality environments. Computers & Education. 68, 570–585 (2013). doi: 10.1016/j.compedu.2013.02.014
dc.description.abstract The purpose of this article is to analyze the current trends in the use of the augmented reality in the chemistry education and to identify the promising areas for the introduction of AR–technologies to support the chemistry education in Ukrainian educational institutions. The article is aimed at solving such problems as: the generalization and analysis of the scientific researches results on the use of the augmented reality in the chemistry education, the characteristics of the modern AR–tools in the chemistry education and the forecasting of some possible areas of the development and improvement of the Ukrainian tools of the augmented reality in the chemistry education. The object of research is the augmented reality, and the subject is the use of the augmented reality in the chemistry learning. As a result of the study, it has been found that AR–technologies are actively used in the chemistry education and their effectiveness has been proven, but there are still no Ukrainian software products in this field. Frequently AR–technologies of the chemistry education are used for 3D visualization of the structure of atoms, molecules, crystalline lattices. The study has made it possible to conclude that there is a significant demand for the chemistry education with the augmented reality that is available via the mobile devices, and accordingly the need to develop the appropriate tools to support the chemistry education at schools and universities. The most promising thing is the development of methodological recommendations for the implementation of laboratory works, textbooks, popular scientific literature on chemistry with the use of the augmented reality technologies and the creation of the simulators for working with the chemical equipment and utensils using the augmented reality. uk_UA
dc.language.iso en uk_UA
dc.publisher Видавничий центр Криворiзького державного педагогiчного унiверситету uk_UA
dc.subject augmented reality uk_UA
dc.subject chemistry education uk_UA
dc.subject technology of the augmented reality (AR-technology) uk_UA
dc.subject 3D model uk_UA
dc.title Use of Augmented Reality in Chemistry Education uk_UA
dc.type Article uk_UA


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics