Description:
1. Halvin, S., Cohen, R.: Complex networks. Structure, robustness and function. Cambridge University Press,
New York (2010).
2. Albert, R., Barabasi, A.-L.: Statistical Mechanics of Complex Networks Rev. Mod. Phys. 74, 47-97. (2002).
3. Newman, M., Watts D., Barabási A.-L.: The Structure and Dynamics of Networks. Princeton University
Press, Princeton and Oxford (2006).
4. Newman, M. E. J.: The structure and function of complex networks. SIAM Reviews. 45(2), 167-256 (2003)
5. Nikolis, G., Prigogine, I.: Exploring complexity. An introduction. W. H. Freeman and Company, New York
(1989).
6. Andrews, B., Calder, M., Davis, R.: Maximumlikelihood estimation for α-stable autoregressive processes.
Ann. Stat. 37, 1946–1982 (2009)
7. Dassios, A., Li, L.: An Economic Bubble Model and Its First Passage Time. arXiv:1803.08160v1 [q-fin.MF]
Last accessed 15 Mar 2018
8. Tarnopolski, M.: Modeling the price of Bitcoin with geometric fractional Brownian motion: a Monte Carlo
approach. arXiv:1707.03746v3 [q-fin.CP] Last accessed 3 Aug 2017
9. Kodama, O., Pichl, L., Kaizoji, T.: Regime Change and Trend Prediction for Bitcoin Time Series Data. In:
CBU International Conference on Innovations in Science and Education. pp 384-388. www.cbuni.cz,
www.journals.cz, Prague, (2017). https://doi.org/10.12955/cbup.v5.954.
10. Shah, D., Zhang, K. Bayesian: Regression and Bitcoin. arXiv:1410.1231v1 [cs.AI] Last accessed 6 Oct
2014.
11. Chen, T., Guestrin, C. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd international
conference on knowledge discovery and data mining. pp. 785-794. ACM, San Francisco (2016)
12. Alessandretti, L., ElBahrawy, A., Aiello, L.M., Baronchelli, A.: Machine Learning the Cryptocurrency
Market. arXiv:1805.08550v1 [physics.soc-ph] Last accessed 22 May 2018.
13. Guo, T., Antulov-Fantulin, N.: An experimental study of Bitcoin fluctuation using machine learning
methods. arXiv:1802.04065v2 [stat.ML] Last accessed 12 Jun 2018.
14. Albuquerque, Y., de Sá, J., Padula, A., Montenegro, M.: The best of two worlds: Forecasting high frequency
volatility for cryptocurrencies and traditional currencies with Support Vector Regression. Expert Systems
With Applications 97, 177–192. (2018) https://doi.org/10.1016/j.eswa.2017.12.004.
15. Wang, M., Zhao, L., Du, R., Wang, C., Chen, L., Tian, L., Stanley, H.E.: A novel hybrid method of
forecasting crude oil prices using complex network science and artificial intelligence algorithms. Applied
Energy 220, 480-495 (2018). https://doi.org/10.1016/j.apenergy.2018.03.148.
16. Kennis, M.: A Multi-channel online discourse as an indicator for Bitcoin price and volume.
arXiv:1811.03146v1 [q-fin.ST] Last accessed 6 Nov 2018.
17. Donier, J., Bouchaud J.P: Why do markets crash? Bitcoin data offers unprecedented insights. PLoS ONE
10(10), 1-11 (2015) https://doi:10.1371/journal.pone.0139356
18. Bariviera, F. A., Zunino, L., Rosso A. O.: An analysis of high-frequency cryptocurrencies price dynamics
using permutation-information-theory quantifiers. Chaos 28(7), 07551 (2018). https://doi:
10.1063/1.5027153
19. Senroy, A.: The inefficiency of Bitcoin revisited: A high-frequency analysis with alternative currencies.
Finance Research Letters (2018). https://doi:10.1016/j.frl.2018.04.002
20. Marwan, N., Schinkel, S., Kurths, J.: Recurrence Plots 25 years later - gaining confidence in dynamical
transitions. Europhysics Letters 101(2) 20007 (2013). https://doi: 10.1209/0295-5075/101/20007
21. Santos, T., Walk, S., Helic, D.: Nonlinear Characterization of Activity Dynamics in Online Collaboration
Websites. In: Proceedings of the 26th International Conference on World Wide Web Companion, pp. 1567-
1572. WWW '17 Companion, Australia (2017). https://doi:10.1145/3041021.3051117
22. Di Francesco Maesa, D., Marino, A. & Ricci, L.: Int J Data Sci Anal. 6(1), 63-80 (2018). https://doi:
10.1007/s41060-017-0074-x
23. Bovet, A., Campajola, C., Lazo, J.F. et al.: Network-based indicators of Bitcoin bubbles.
arXiv:1805.04460v1 [physics.soc-ph] Last accessed 11 May 2018
24. Kondor, D., Csabai, I., Szüle, J., Pόsfai, M., Vattay, G.: Infferring the interplay of network structure and
market effects in Bitcoin. New J. Phys. 16, 125003 (2014). doi:10.1088/1367-2630/16/12/125003
25. Wheatley, S., Sornette, D., Huber, T. et al.: Are Bitcoin Bubbles Predictable? Combining a Generalized
Metcalfe’s Law and the LPPLS Model. arXiv:1803.05663v1 [econ.EM] Last accessed 15 September 2018.
26. Gerlach, J-C., Demos, G., Sornette, D.: Dissection of Bitcoin's Multiscale Bubble History from January
2012 to February 2018. arXiv:1804.06261v2 [econ.EM] Last accessed 15 September 2018
27. Soloviev, V., Belinskiy, A.: Methods of nonlinear dynamics and the construction of cryptocurrency crisis
phenomena precursors. arXiv:1807.05837v1 [q-fin.ST] Last accessed 30 June 2018
28. Casey M. B.: Speculative Bitcoin Adoption/Price Theory, https://medium.com/@mcasey0827/speculativeBitcoin-adoption-price-theory-2eed48ecf7da. Last accessed 25 September 2018 29. McComb, K.: Bitcoin Crash: Analysis of 8 Historical Crashes and What’s Next,
https://blog.purse.io/Bitcoin-crash-e112ee42c0b5. Last accessed 25 September 2018
30. Amadeo K.: Stock Market Corrections Versus Crashes And How to Protect Yourself: How You Can Tell If
It’s a Correction or a Crash, https://www.thebalance.com/stock-market-correction-3305863. Last accessed
25 September 2018
31. Mantegna, R. N., Stanley, H. E.: An Introduction to Econophysics: Correlations and Complexity in Finance.
Cambridge Univ. Press, Cambridge UK (2000)
32. Maslov, V.P.: Econophysics and quantum statistics”. Mathematical Notes 72, 811-818 (2002)
33. Hidalgo, E.G.: Quantum Econophysics. arXiv:physics/0609245v1 [physics.soc-ph] Last accessed 15
September 2018.
34. Saptsin, V., Soloviev, V.: Relativistic quantum econophysics - new paradigms in complex systems
modelling. arXiv:0907.1142v1 [physics.soc-ph] Last accessed 25 September 2018
35. Colangelo, G., Clurana, F.M., Blanchet, L.C., Sewell, R.J., Mitchell, M.W.: Simultaneous tracking of spin
angle and amplitude beyond classical limits. Nature 543, 525-528 (2017)
36. Rodriguez, E.B., Aguilar, L.M.A.: Disturbance-Disturbance uncertainty relation: The statistical
distinguishability of quantum states determines disturbance. Scientific Reports 8, 1-10 (2018)
37. Rozema, L.A., Darabi, A., Mahler, D.H., Hayat, A., Soudagar, Y., Steinberg, A.M.: Violation of
Heisenberg’s Measurement-Disturbance Relationship by Weak Measurements. Phys. Rev. Lett. 109, 100404
(2012)
38. Prevedel, R., Hamel, D. R., Colbeck, R., Fisher, K., Resch, K. J.: Experimental investigation of the
uncertainty principle in the presence of quantum memory. Nature Phys. 7(29), 757-761 (2011).
39. Berta, M., Christandl, M., Colbeck, R., Renes, J., Renner, R.: The Uncertainty Principle in the Presence of
Quantum Memory. Nature Phys. 6(9), 659-662 (2010)
40. Landau, L.D., Lifshitis, E.M.: The classical theory of fields. Course of theoretical physics. ButterworthHeinemann, Oxford, England (1975)
41. Soloviev, V., Saptsin, V.: Heisenberg uncertainty principle and economic analogues of basic physical
quantities, arXiv:1111.5289v1 [physics.gen-ph] Last accessed 15 September 2018
42. Soloviev, V.N., Romanenko, Y.V.: Economic analog of Heisenberg uncertainly principle and financial
crisis: In: 20-th International conference SAIT 2017, pp. 32-33. ESC “IASA” NTUU “Igor Sikorsky Kyiv
Polytechnic Institute”, Ukraine (2017)
43. Soloviev, V.N., Romanenko, Y.V.: Economic analog of Heisenberg uncertainly principle and financial
crisis”, In: 20-th International conference SAIT 2018, pp. 33-34. ESC “IASA” NTUU “Igor Sikorsky Kyiv
Polytechnic Institute”, Ukraine (2018)
44. Wigner, E.P.: On a class of analytic functions from the quantum theory of collisions”, Ann. Math. 53, 36-47
(1951).
45. Dyson, F.J.: Statistical Theory of the Energy Levels of Complex Systems. Journal of Mathematical Physics
3, 140-156 (1962).
46. Mehta, L.M.: Random Matrices, Academic Press, San Diego (1991)
47. Laloux, L., Cizeau, P., Bouchaud, J.-P., Potters, M.: Noise dressing of financial correlation matrices. Phys.
Rev. Lett. 83, 1467–1470 (1999).
48. Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L. A. N., Guhr, T., Stanley, H. E:. Random matrix
approach to cross correlations in financial data. Phys. Rev. E 65, 066126 (2002).
49. Shen, J., Zheng, B.: Cross-correlation in financial dynamics, EPL (Europhys. Lett.) 86, 48005 (2009).
50. Jiang, S., Guo, J., Yang, C., Tian, L.: Random Matrix Analysis of Cross-correlation in Energy Market of
Shanxi, China. International Journal of Nonlinear Science 23(2), 96-101 (2017).
51. Urama, T,C., Ezepue, P.O., Nnanwa, C.P.: Analysis of Cross-Correlations in Emerging Markets Using
Random Matrix Theory. Journal of Mathematical Finance 7, 291-307 (2017).
52. Pharasi, H.K., Sharma, K., Chakraborti, A., Seligman, T.H. Complex market dynamics in the light of
random matrix theory, arXiv:1809.07100v2 [q-fin.ST] 24 Sep 2018. Last accessed 15 September 2018
53. Stosic, D., Stosic, D., Ludermir, T.B., Stosic, T. Collective behavior of cryptocurrency price changes.
Physica A: Statistical Mechanics and its Applications 507, 499-509 (2018)
54. Anderson, P., W.: Absence of Diffusion in Certain Random Lattices. Phys. Rev. 109, 1492 (1958)