DSpace Repository

Quantum econophysical precursors of cryptocurrency crashes

Show simple item record

dc.contributor.author Соловйов, Володимир Миколайович
dc.contributor.author Serdiuk, Oleksandr
dc.date.accessioned 2020-01-01T15:03:45Z
dc.date.available 2020-01-01T15:03:45Z
dc.date.issued 2019
dc.identifier.citation Soloviev V. Quantum econophysical precursors of cryptocurrency crashes / Soloviev Vladimir, Serdiuk Oleksandr // Вісник Черкаського університету. Серія «Прикладна математика. Інформатика». - 2009. - № 1. - С. 3-16 uk_UA
dc.identifier.issn 2076-5886
dc.identifier.other DOI 10.31651/2076-5886-2019-1-3-16
dc.identifier.uri http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/3570
dc.identifier.uri https://doi.org/10.31651/2076-5886-2019-1-3-16
dc.description 1. Halvin, S., Cohen, R.: Complex networks. Structure, robustness and function. Cambridge University Press, New York (2010). 2. Albert, R., Barabasi, A.-L.: Statistical Mechanics of Complex Networks Rev. Mod. Phys. 74, 47-97. (2002). 3. Newman, M., Watts D., Barabási A.-L.: The Structure and Dynamics of Networks. Princeton University Press, Princeton and Oxford (2006). 4. Newman, M. E. J.: The structure and function of complex networks. SIAM Reviews. 45(2), 167-256 (2003) 5. Nikolis, G., Prigogine, I.: Exploring complexity. An introduction. W. H. Freeman and Company, New York (1989). 6. Andrews, B., Calder, M., Davis, R.: Maximumlikelihood estimation for α-stable autoregressive processes. Ann. Stat. 37, 1946–1982 (2009) 7. Dassios, A., Li, L.: An Economic Bubble Model and Its First Passage Time. arXiv:1803.08160v1 [q-fin.MF] Last accessed 15 Mar 2018 8. Tarnopolski, M.: Modeling the price of Bitcoin with geometric fractional Brownian motion: a Monte Carlo approach. arXiv:1707.03746v3 [q-fin.CP] Last accessed 3 Aug 2017 9. Kodama, O., Pichl, L., Kaizoji, T.: Regime Change and Trend Prediction for Bitcoin Time Series Data. In: CBU International Conference on Innovations in Science and Education. pp 384-388. www.cbuni.cz, www.journals.cz, Prague, (2017). https://doi.org/10.12955/cbup.v5.954. 10. Shah, D., Zhang, K. Bayesian: Regression and Bitcoin. arXiv:1410.1231v1 [cs.AI] Last accessed 6 Oct 2014. 11. Chen, T., Guestrin, C. Xgboost: A scalable tree boosting system. In: Proceedings of the 22nd international conference on knowledge discovery and data mining. pp. 785-794. ACM, San Francisco (2016) 12. Alessandretti, L., ElBahrawy, A., Aiello, L.M., Baronchelli, A.: Machine Learning the Cryptocurrency Market. arXiv:1805.08550v1 [physics.soc-ph] Last accessed 22 May 2018. 13. Guo, T., Antulov-Fantulin, N.: An experimental study of Bitcoin fluctuation using machine learning methods. arXiv:1802.04065v2 [stat.ML] Last accessed 12 Jun 2018. 14. Albuquerque, Y., de Sá, J., Padula, A., Montenegro, M.: The best of two worlds: Forecasting high frequency volatility for cryptocurrencies and traditional currencies with Support Vector Regression. Expert Systems With Applications 97, 177–192. (2018) https://doi.org/10.1016/j.eswa.2017.12.004. 15. Wang, M., Zhao, L., Du, R., Wang, C., Chen, L., Tian, L., Stanley, H.E.: A novel hybrid method of forecasting crude oil prices using complex network science and artificial intelligence algorithms. Applied Energy 220, 480-495 (2018). https://doi.org/10.1016/j.apenergy.2018.03.148. 16. Kennis, M.: A Multi-channel online discourse as an indicator for Bitcoin price and volume. arXiv:1811.03146v1 [q-fin.ST] Last accessed 6 Nov 2018. 17. Donier, J., Bouchaud J.P: Why do markets crash? Bitcoin data offers unprecedented insights. PLoS ONE 10(10), 1-11 (2015) https://doi:10.1371/journal.pone.0139356 18. Bariviera, F. A., Zunino, L., Rosso A. O.: An analysis of high-frequency cryptocurrencies price dynamics using permutation-information-theory quantifiers. Chaos 28(7), 07551 (2018). https://doi: 10.1063/1.5027153 19. Senroy, A.: The inefficiency of Bitcoin revisited: A high-frequency analysis with alternative currencies. Finance Research Letters (2018). https://doi:10.1016/j.frl.2018.04.002 20. Marwan, N., Schinkel, S., Kurths, J.: Recurrence Plots 25 years later - gaining confidence in dynamical transitions. Europhysics Letters 101(2) 20007 (2013). https://doi: 10.1209/0295-5075/101/20007 21. Santos, T., Walk, S., Helic, D.: Nonlinear Characterization of Activity Dynamics in Online Collaboration Websites. In: Proceedings of the 26th International Conference on World Wide Web Companion, pp. 1567- 1572. WWW '17 Companion, Australia (2017). https://doi:10.1145/3041021.3051117 22. Di Francesco Maesa, D., Marino, A. & Ricci, L.: Int J Data Sci Anal. 6(1), 63-80 (2018). https://doi: 10.1007/s41060-017-0074-x 23. Bovet, A., Campajola, C., Lazo, J.F. et al.: Network-based indicators of Bitcoin bubbles. arXiv:1805.04460v1 [physics.soc-ph] Last accessed 11 May 2018 24. Kondor, D., Csabai, I., Szüle, J., Pόsfai, M., Vattay, G.: Infferring the interplay of network structure and market effects in Bitcoin. New J. Phys. 16, 125003 (2014). doi:10.1088/1367-2630/16/12/125003 25. Wheatley, S., Sornette, D., Huber, T. et al.: Are Bitcoin Bubbles Predictable? Combining a Generalized Metcalfe’s Law and the LPPLS Model. arXiv:1803.05663v1 [econ.EM] Last accessed 15 September 2018. 26. Gerlach, J-C., Demos, G., Sornette, D.: Dissection of Bitcoin's Multiscale Bubble History from January 2012 to February 2018. arXiv:1804.06261v2 [econ.EM] Last accessed 15 September 2018 27. Soloviev, V., Belinskiy, A.: Methods of nonlinear dynamics and the construction of cryptocurrency crisis phenomena precursors. arXiv:1807.05837v1 [q-fin.ST] Last accessed 30 June 2018 28. Casey M. B.: Speculative Bitcoin Adoption/Price Theory, https://medium.com/@mcasey0827/speculativeBitcoin-adoption-price-theory-2eed48ecf7da. Last accessed 25 September 2018 29. McComb, K.: Bitcoin Crash: Analysis of 8 Historical Crashes and What’s Next, https://blog.purse.io/Bitcoin-crash-e112ee42c0b5. Last accessed 25 September 2018 30. Amadeo K.: Stock Market Corrections Versus Crashes And How to Protect Yourself: How You Can Tell If It’s a Correction or a Crash, https://www.thebalance.com/stock-market-correction-3305863. Last accessed 25 September 2018 31. Mantegna, R. N., Stanley, H. E.: An Introduction to Econophysics: Correlations and Complexity in Finance. Cambridge Univ. Press, Cambridge UK (2000) 32. Maslov, V.P.: Econophysics and quantum statistics”. Mathematical Notes 72, 811-818 (2002) 33. Hidalgo, E.G.: Quantum Econophysics. arXiv:physics/0609245v1 [physics.soc-ph] Last accessed 15 September 2018. 34. Saptsin, V., Soloviev, V.: Relativistic quantum econophysics - new paradigms in complex systems modelling. arXiv:0907.1142v1 [physics.soc-ph] Last accessed 25 September 2018 35. Colangelo, G., Clurana, F.M., Blanchet, L.C., Sewell, R.J., Mitchell, M.W.: Simultaneous tracking of spin angle and amplitude beyond classical limits. Nature 543, 525-528 (2017) 36. Rodriguez, E.B., Aguilar, L.M.A.: Disturbance-Disturbance uncertainty relation: The statistical distinguishability of quantum states determines disturbance. Scientific Reports 8, 1-10 (2018) 37. Rozema, L.A., Darabi, A., Mahler, D.H., Hayat, A., Soudagar, Y., Steinberg, A.M.: Violation of Heisenberg’s Measurement-Disturbance Relationship by Weak Measurements. Phys. Rev. Lett. 109, 100404 (2012) 38. Prevedel, R., Hamel, D. R., Colbeck, R., Fisher, K., Resch, K. J.: Experimental investigation of the uncertainty principle in the presence of quantum memory. Nature Phys. 7(29), 757-761 (2011). 39. Berta, M., Christandl, M., Colbeck, R., Renes, J., Renner, R.: The Uncertainty Principle in the Presence of Quantum Memory. Nature Phys. 6(9), 659-662 (2010) 40. Landau, L.D., Lifshitis, E.M.: The classical theory of fields. Course of theoretical physics. ButterworthHeinemann, Oxford, England (1975) 41. Soloviev, V., Saptsin, V.: Heisenberg uncertainty principle and economic analogues of basic physical quantities, arXiv:1111.5289v1 [physics.gen-ph] Last accessed 15 September 2018 42. Soloviev, V.N., Romanenko, Y.V.: Economic analog of Heisenberg uncertainly principle and financial crisis: In: 20-th International conference SAIT 2017, pp. 32-33. ESC “IASA” NTUU “Igor Sikorsky Kyiv Polytechnic Institute”, Ukraine (2017) 43. Soloviev, V.N., Romanenko, Y.V.: Economic analog of Heisenberg uncertainly principle and financial crisis”, In: 20-th International conference SAIT 2018, pp. 33-34. ESC “IASA” NTUU “Igor Sikorsky Kyiv Polytechnic Institute”, Ukraine (2018) 44. Wigner, E.P.: On a class of analytic functions from the quantum theory of collisions”, Ann. Math. 53, 36-47 (1951). 45. Dyson, F.J.: Statistical Theory of the Energy Levels of Complex Systems. Journal of Mathematical Physics 3, 140-156 (1962). 46. Mehta, L.M.: Random Matrices, Academic Press, San Diego (1991) 47. Laloux, L., Cizeau, P., Bouchaud, J.-P., Potters, M.: Noise dressing of financial correlation matrices. Phys. Rev. Lett. 83, 1467–1470 (1999). 48. Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L. A. N., Guhr, T., Stanley, H. E:. Random matrix approach to cross correlations in financial data. Phys. Rev. E 65, 066126 (2002). 49. Shen, J., Zheng, B.: Cross-correlation in financial dynamics, EPL (Europhys. Lett.) 86, 48005 (2009). 50. Jiang, S., Guo, J., Yang, C., Tian, L.: Random Matrix Analysis of Cross-correlation in Energy Market of Shanxi, China. International Journal of Nonlinear Science 23(2), 96-101 (2017). 51. Urama, T,C., Ezepue, P.O., Nnanwa, C.P.: Analysis of Cross-Correlations in Emerging Markets Using Random Matrix Theory. Journal of Mathematical Finance 7, 291-307 (2017). 52. Pharasi, H.K., Sharma, K., Chakraborti, A., Seligman, T.H. Complex market dynamics in the light of random matrix theory, arXiv:1809.07100v2 [q-fin.ST] 24 Sep 2018. Last accessed 15 September 2018 53. Stosic, D., Stosic, D., Ludermir, T.B., Stosic, T. Collective behavior of cryptocurrency price changes. Physica A: Statistical Mechanics and its Applications 507, 499-509 (2018) 54. Anderson, P., W.: Absence of Diffusion in Certain Random Lattices. Phys. Rev. 109, 1492 (1958)
dc.description.abstract This article demonstrates the possibility of constructing indicators of critical and crash phenomena in the volatile market of cryptocurrency. The possibility of constructing dynamic measures of complexity as quantum econophysical behaving in a proper way during actual pre-crash periods has been shown. This fact is used to build predictors of crashes and critical events phenomena on the examples of all the patterns recorded in the time series of the key cryptocurrency Bitcoin, the effectiveness of the proposed indicators-precursors of these falls has been identified. From positions, attained by modern theoretical physics the concept of economic Planсk's constant has been proposed. The theory on the economic dynamic time series related to the cryptocurrencies market has been approved. Then, combining the empirical cross-correlation matrix with the Random Matrix Theory, we mainly examine the statistical properties of cross-correlation coefficient, the evolution of the distribution of eigenvalues and corresponding eigenvectors of the global cryptocurrency market using the daily returns of cryptocurrencies price time series all over the world from 2013 to 2018. The result has indicated that the largest eigenvalue reflects a collective effect of the whole market, and is very sensitive to the crash phenomena. It has been shown that both the introduced economic mass and the largest eigenvalue of the matrix of correlations can act like quantum indicators-predictors of falls in the market of cryptocurrencies. У статті демонструється можливість побудови показників критичних та кризових явищ на волатильному ринку криптовалюти. Показана можливість побудови динамічних мір складності як квантової екофізичної поведінки належним чином протягом фактичних періодів перед збоєм. Цей факт використовується для побудови прогнозів катастроф та явищ критичних подій на прикладах усіх закономірностей, зафіксованих у часовому ряду ключової криптовалюти Bitcoin, виявлено ефективність запропонованих показників-попередників цих падінь. З позицій, отриманих сучасною теоретичною фізикою, запропонована концепція економічної константи Пласска. Затверджена теорія щодо економічних динамічних часових рядів, пов'язаних з ринком криптовалют. Тоді, поєднуючи емпіричну матрицю перехресної кореляції з теорією випадкової матриці, ми в основному вивчаємо статистичні властивості коефіцієнта перехресної кореляції, еволюцію розподілу власних значень та відповідних власних векторів світового ринку криптовалют, використовуючи щоденну віддачу криптовалют із цінового часу серіал у всьому світі з 2013 по 2018 рік. Результат показав, що найбільше власне значення відображає колективний ефект усього ринку і є дуже чутливим до явищ краху. Показано, що як введена економічна маса, так і найбільше власне значення матриці кореляцій можуть діяти як квантові показники-провісники падіння на ринку криптовалют. uk_UA
dc.language.iso en uk_UA
dc.publisher Черкаський національний університет імені Богдана Хмельницького uk_UA
dc.subject криптовалюта uk_UA
dc.subject біткойн uk_UA
dc.subject складна система uk_UA
dc.subject міри складності uk_UA
dc.subject аварії uk_UA
dc.subject критичні події uk_UA
dc.subject складні мережі uk_UA
dc.subject квантова еконофізика uk_UA
dc.subject принцип невизначеності Гейзенберга uk_UA
dc.subject теорія випадкової матриці uk_UA
dc.subject індикатор-попередник uk_UA
dc.subject cryptocurrency uk_UA
dc.subject Bitcoin uk_UA
dc.subject complex system uk_UA
dc.subject measures of complexity uk_UA
dc.subject crash uk_UA
dc.subject critical events uk_UA
dc.subject complex networks uk_UA
dc.subject quantum econophysics uk_UA
dc.subject Heisenberg uncertainty principle uk_UA
dc.subject Random Matrix Theory uk_UA
dc.subject indicator-precursor uk_UA
dc.title Quantum econophysical precursors of cryptocurrency crashes uk_UA
dc.title.alternative Передвісники крахів криптовалют на основі показників квантумної еконофізики uk_UA
dc.type Article uk_UA


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics