Description:
1. K. Sumioka, H. Kayashima, and T. Tsutsui, “Tuning the optical properties of inverse opal
photonic crystals by deformation,” Adv. Mater. 14(18), 1284–1286 (2002).
2. F. Di Stasio et al., “Tuning optical properties of opal photonic crystals by structural defects
engineering,” J. Eur. Opt. Soc. Rapid Publ. 4, 09033 (2009).
3. L. Nucara, G. Francesco, and M. Virgilio, “Electrically responsive photonic crystals: a
review,” J. Mater. Chem. C 3(33), 8449–8467 (2015).
4. J. Ge et al., “Rewritable photonic paper with hygroscopic salt solution as ink,” Adv. Mater.
21(42), 4259–4264 (2009).
5. D. McPhail, M. Straub, and M. Gu, “Electrical tuning of three-dimensional photonic crystals
using polymer dispersed liquid crystals,” Appl. Phys. Lett. 86(5), 051103 (2005).
6. Y. Zhang et al., “Optical anisotropy in vertically oriented TiO2 nanotube arrays,”
Nanotechnology 28(37), 374001 (2017).
7. J. B. Pendry, “Calculating photonic band structure,” J. Phys. Condens. Matter 8(9), 1085–
1108 (1996).
8. E. Y. Glushko, “Analytical solution for the field in photonic structures containing cubic
nonlinearity,” Opt. Commun. 259(1), 342–349 (2006).
9. S. I. Pokutnyi and P. P. Gorbyk, “Absorption of light in positron and electron states in quasizero–dimensional nanosystems,” Optics 2(4), 47–50 (2013).
10. M. Hybertsen and S. Louie, “Ab initio static dielectric matrices from the density-functional
approach. I. Formulation and application to semiconductors and insulators,” Phys. Rev. B
35(11), 5585–5601 (1987).
11. Ab initio calculation, http://sites.google.com/a/kdpu.edu.ua/calculationphysics (2015).
12. R. M. Balabai and H. N. Chernikova, “Platinum-nickel alloy catalysts for fuel elements,”
Appl. Phys. A 116(2), 649–655 (2014).
13. R. M. Balabai et al., “Electron structure and dielectric matrix of the model photonic crystals
formed by fibers: ab initio calculation,” Nanosyst. Nanomater. Nanotechnol. 13(4), 707–
720 (2015).
14. R. M. Balabai, D. Gritsulia, and V. G. Litovchenko, “Tuning of electron states of transition
metal’s catalysts using acceptor’s atoms: ab initio calculation,” J. Nano-Electron. Phys.
8(2), 02007 (2016).
15. R. M. Balabai and D. Kravtsova, “Anomalous electronic properties of thin metal films of
island structures: the first principles calculations,” J. Phys. Stud. 21(1/2), 1703 (2017).
16. R. M. Balabai and D. Kravtsova, “Hardness of diamond-сBN nanocomposite,” Diamond
Relat. Mater. 82, 56–62 (2018).
17. P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136(3B), B864
(1964).
18. W. Kohn and L. Sham, “Self-consistent equations including exchange and correlation
effects,” Phys. Rev. 140(4A), A1133 (1965).
19. G. Bachelet, D. Hamann, and M. Schlüter, “Pseudopotentials that work: from H to Pu,”
Phys. Rev. B 26(8), 4199–4228 (1982).
20. J. Ihm, A. Zunger, and M. Cohen, “Momentum-space formalism for the total energy of
solids,” J. Phys. C: Solid State Phys. 12(21), 4409–4422 (1979).
21. M. Payne et al., “Iterative minimization techniques for ab initio total-energy calculations:
molecular dynamics and conjugate gradients,” Rev. Mod. Phys. 64(4), 1045–1097 (1992).
22. A. G. Marinopoulos et al., “Ab initio study of the optical absorption and wave-vectordependent dielectric response of graphite,” Phys. Rev. B 69, 245419 (2004).
23. M. Gajdoš et al., “Linear optical properties in the projector-augmented wave methodology,”
Phys. Rev. B 73, 045112 (2006).