DSpace Repository

Electronic, dielectric, and optical properties of photonic crystals composed of TiO2 nanoparticles three-dimensional arrays: the first principles calculations

Show simple item record

dc.contributor.author Балабай, Руслана Михайлівна
dc.contributor.author Kravtsova, Dariya
dc.contributor.author Мерзликін, Павло Володимирович
dc.contributor.author Prihozhaya, Yuliya
dc.date.accessioned 2018-12-25T09:15:59Z
dc.date.available 2018-12-25T09:15:59Z
dc.date.issued 2018
dc.identifier.citation Balabai R. M. Electronic, dielectric, and optical properties of photonic crystals composed of TiO2 nanoparticles three-dimensional arrays: the first principles calculations / Ruslana Balabai, Dariya Kravtsova, Pavlo Merzlykin, Yuliya Prihozhaya // Journal of Nanophotonics. - 2018. - Vol. 12, Iss. 3, 036003-1 - 036003-10. - DOI: 10.1117/1.JNP.12.036003 uk
dc.identifier.uri http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/2852
dc.identifier.uri https://doi.org/10.1117/1.JNP.12.036003
dc.description 1. K. Sumioka, H. Kayashima, and T. Tsutsui, “Tuning the optical properties of inverse opal photonic crystals by deformation,” Adv. Mater. 14(18), 1284–1286 (2002). 2. F. Di Stasio et al., “Tuning optical properties of opal photonic crystals by structural defects engineering,” J. Eur. Opt. Soc. Rapid Publ. 4, 09033 (2009). 3. L. Nucara, G. Francesco, and M. Virgilio, “Electrically responsive photonic crystals: a review,” J. Mater. Chem. C 3(33), 8449–8467 (2015). 4. J. Ge et al., “Rewritable photonic paper with hygroscopic salt solution as ink,” Adv. Mater. 21(42), 4259–4264 (2009). 5. D. McPhail, M. Straub, and M. Gu, “Electrical tuning of three-dimensional photonic crystals using polymer dispersed liquid crystals,” Appl. Phys. Lett. 86(5), 051103 (2005). 6. Y. Zhang et al., “Optical anisotropy in vertically oriented TiO2 nanotube arrays,” Nanotechnology 28(37), 374001 (2017). 7. J. B. Pendry, “Calculating photonic band structure,” J. Phys. Condens. Matter 8(9), 1085– 1108 (1996). 8. E. Y. Glushko, “Analytical solution for the field in photonic structures containing cubic nonlinearity,” Opt. Commun. 259(1), 342–349 (2006). 9. S. I. Pokutnyi and P. P. Gorbyk, “Absorption of light in positron and electron states in quasizero–dimensional nanosystems,” Optics 2(4), 47–50 (2013). 10. M. Hybertsen and S. Louie, “Ab initio static dielectric matrices from the density-functional approach. I. Formulation and application to semiconductors and insulators,” Phys. Rev. B 35(11), 5585–5601 (1987). 11. Ab initio calculation, http://sites.google.com/a/kdpu.edu.ua/calculationphysics (2015). 12. R. M. Balabai and H. N. Chernikova, “Platinum-nickel alloy catalysts for fuel elements,” Appl. Phys. A 116(2), 649–655 (2014). 13. R. M. Balabai et al., “Electron structure and dielectric matrix of the model photonic crystals formed by fibers: ab initio calculation,” Nanosyst. Nanomater. Nanotechnol. 13(4), 707– 720 (2015). 14. R. M. Balabai, D. Gritsulia, and V. G. Litovchenko, “Tuning of electron states of transition metal’s catalysts using acceptor’s atoms: ab initio calculation,” J. Nano-Electron. Phys. 8(2), 02007 (2016). 15. R. M. Balabai and D. Kravtsova, “Anomalous electronic properties of thin metal films of island structures: the first principles calculations,” J. Phys. Stud. 21(1/2), 1703 (2017). 16. R. M. Balabai and D. Kravtsova, “Hardness of diamond-сBN nanocomposite,” Diamond Relat. Mater. 82, 56–62 (2018). 17. P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev. 136(3B), B864 (1964). 18. W. Kohn and L. Sham, “Self-consistent equations including exchange and correlation effects,” Phys. Rev. 140(4A), A1133 (1965). 19. G. Bachelet, D. Hamann, and M. Schlüter, “Pseudopotentials that work: from H to Pu,” Phys. Rev. B 26(8), 4199–4228 (1982). 20. J. Ihm, A. Zunger, and M. Cohen, “Momentum-space formalism for the total energy of solids,” J. Phys. C: Solid State Phys. 12(21), 4409–4422 (1979). 21. M. Payne et al., “Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients,” Rev. Mod. Phys. 64(4), 1045–1097 (1992). 22. A. G. Marinopoulos et al., “Ab initio study of the optical absorption and wave-vectordependent dielectric response of graphite,” Phys. Rev. B 69, 245419 (2004). 23. M. Gajdoš et al., “Linear optical properties in the projector-augmented wave methodology,” Phys. Rev. B 73, 045112 (2006).
dc.description.abstract Opal photonic crystals (PCs), composed of TiO2 nanoparticles, three-dimensional array were simulated. This paper shows how electronic, dielectric, and optical properties of such PCs depend on the shape of structural elements, their polymorphic modifications, and the parameters of their stacking in the body’s space of metastructure. uk
dc.language.iso en uk
dc.publisher Society of Photo-Optical Instrumentation Engineers (SPIE) uk
dc.subject photonic crystals uk
dc.subject TiO2 uk
dc.subject rutile uk
dc.subject anatase uk
dc.subject dielectric matrix uk
dc.subject macroscopic relative permittivity. uk
dc.title Electronic, dielectric, and optical properties of photonic crystals composed of TiO2 nanoparticles three-dimensional arrays: the first principles calculations uk
dc.type Article uk


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics