Abstract:
In this work, a gas-filled 1D elastic pneumatic photonic crystal is proposed as an optical indicator of pressure which can unite several pressure scales of magnitude. The indicator includes layered elastic platform, optical fibers and switching valves, all enclosed into a chamber. We have investigated the pneumatic photonic crystal bandgap structure and light reflection changes under external pressure. At the chosen parameters the device may cover the pressure interval (0, 10) bar with extremely high accuracy (1 μbar) for actual pressures existing inside the biofluid systems of biological organisms. The size of the indicator is close to 1 mm and may be decreased. The miniaturized optical devices considered may offer an opportunity to organize simultaneous and total scanning monitoring of biofluid pressure in different parts of the circulatory systems.