Description:
[1] A. Bielinskyi, V. Soloviev, V. Solovieva, S. Semerikov, M. Radin, Recurrence Measures of
Complexity in Energy Market Dynamics, in: S. Semerikov, V. Soloviev, A. Matviychuk,
V. Kobets, L. Kibalnyk, H. Danylchuk, A. Kiv (Eds.), Proceedings of 10th International
Conference on Monitoring, Modeling & Management of Emergent Economy - M3E2,
INSTICC, SciTePress, 2023, pp. 122–133. doi:10.5220/0011931800003432.
[2] Y.-J. Zhang, Y.-B. Wu, The time-varying spillover effect between WTI crude oil futures
returns and hedge funds, International Review of Economics & Finance 61 (2019) 156–169.
doi:10.1016/j.iref.2019.02.006.
[3] Y. Dong, M. Zhang, R. Zhou, Classification of Network Game Traffic Using Machine Learning, in: H. Yuan, J. Geng, C. Liu, F. Bian, T. Surapunt (Eds.), Geo-Spatial Knowledge and Intelligence, Springer, Singapore, 2018, pp. 134–145. doi:10.1007/978- 981- 13- 0893- 2_15.
[4] G. Wu, Y.-J. Zhang, Does China factor matter? An econometric analysis of international
crude oil prices, Energy Policy 72 (2014) 78–86. doi:10.1016/j.enpol.2014.04.026.
[5] Q. Ji, E. Bouri, D. Roubaud, L. Kristoufek, Information interdependence among energy,
cryptocurrency and major commodity markets, Energy Economics 81 (2019) 1042–1055.
doi:10.1016/j.eneco.2019.06.005.
[6] L. Coleman, Explaining crude oil prices using fundamental measures, Energy Policy 40
(2012) 318–324. doi:10.1016/j.enpol.2011.10.012.
[7] R. Sari, U. Soytas, E. Hacihasanoglu, Do global risk perceptions influence world oil prices?,
Energy Economics 33 (2011) 515–524. doi:10.1016/j.eneco.2010.12.006.
[8] S. Dées, P. Karadeloglou, R. K. Kaufmann, M. Sánchez, Modelling the world oil market:
Assessment of a quarterly econometric model, Energy Policy 35 (2007) 178–191. doi:10.
1016/j.enpol.2005.10.017.
[9] Y.-J. Zhang, J. Wang, Exploring the WTI crude oil price bubble process using the Markov
regime switching model, Physica A: Statistical Mechanics and its Applications 421 (2015)
377–387. doi:10.1016/j.physa.2014.11.051.
[10] U. Shahzad, S. K. Jena, A. K. Tiwari, B. Doğan, C. Magazzino, Time-frequency analysis
between Bloomberg Commodity Index (BCOM) and WTI crude oil prices, Resources Policy
78 (2022) 102823. doi:10.1016/j.resourpol.2022.102823.
[11] T. Yin, Y. Wang, Predicting the price of WTI crude oil futures using artificial intelligence
model with chaos, Fuel 316 (2022) 122523. doi:10.1016/j.fuel.2021.122523.
[12] Y. Zhang, M. He, D. Wen, Y. Wang, Forecasting crude oil price returns: Can nonlinearity
help?, Energy 262 (2023) 125589. doi:10.1016/j.energy.2022.125589.
[13] L. Kilian, Not All Oil Price Shocks Are Alike: Disentangling Demand and Supply Shocks
in the Crude Oil Market, American Economic Review 99 (2009) 1053–69. doi:10.1257/
aer.99.3.1053.
[14] R. P. Flood, R. J. Hodrick, On Testing for Speculative Bubbles, Journal of Economic
Perspectives 4 (1990) 85–101. doi:10.1257/jep.4.2.85.
[15] J. Li, Q. Wu, Y. Tian, L. Fan, Monthly Henry Hub natural gas spot prices forecasting
using variational mode decomposition and deep belief network, Energy 227 (2021) 120478.
doi:10.1016/j.energy.2021.120478.
[16] H. Poincaré, The Three-Body Problem and the Equations of Dynamics: Poincaré’s Foundational Work on Dynamical Systems Theory, Astrophysics and Space Science Library, 1 ed.,
Springer, Cham, 2017. doi:10.1007/978- 3- 319- 52899- 1.
[17] F. Takens, Detecting strange attractors in turbulence, in: D. Rand, L.-S. Young (Eds.),
Dynamical Systems and Turbulence, Warwick 1980, Springer Berlin Heidelberg, Berlin,
Heidelberg, 1981, pp. 366–381. doi:10.1007/BFb0091924.
[18] J.-P. Eckmann, D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Mod. Phys.
57 (1985) 617–656. doi:10.1103/RevModPhys.57.617.
[19] H. Kantz, T. Schreiber, Nonlinear Time Series Analysis, 2 ed., Cambridge University Press,
2003. doi:10.1017/CBO9780511755798.
[20] E. Ott, T. Sauer, J. A. Yorke, Coping with Chaos, Wiley Series in Nonlinear Science, Wiley,
1994.
[21] J.-P. Eckmann, S. O. Kamphorst, D. Ruelle, Recurrence Plots of Dynamical Systems,
Europhysics Letters (EPL) 4 (1987) 973–977. doi:10.1209/0295- 5075/4/9/004.
[22] C. L. Webber, J. P. Zbilut, Recurrence quantification analysis of nonlinear dynamical
systems, in: M. A. Riley, G. C. V. Orden (Eds.), Tutorials in Contemporary Nonlinear
Methods for the Behavioral Sciences, National Science Foundation (NSF), 2005, pp. 26–94.
[23] L. W. Charles, C. Ioana, N. Marwan (Eds.), Recurrence Plots and Their Quantifications:
Expanding Horizons: Proceedings of the 6th International Symposium on Recurrence
Plots, Grenoble, France, 17-19 June 2015, volume 180 of Springer Proceedings in Physics,
Springer, Cham, 2015. doi:10.1007/978- 3- 319- 29922- 8.
[24] N. Marwan, M. Carmen Romano, M. Thiel, J. Kurths, Recurrence plots for the analysis of
complex systems, Physics Reports 438 (2007) 237–329. doi:10.1016/j.physrep.2006.11.
001.
[25] C. L. Webber, J. P. Zbilut, Dynamical assessment of physiological systems and states using
recurrence plot strategies, Journal of Applied Physiology 76 (1994) 965–973. doi:10.1152/
jappl.1994.76.2.965.
[26] J. P. Zbilut, C. L. Webber, Embeddings and delays as derived from quantification of
recurrence plots, Physics Letters A 171 (1992) 199–203. doi:10.1016/0375- 9601(92)90426- M.
[27] N. Marwan, N. Wessel, U. Meyerfeldt, A. Schirdewan, J. Kurths, Recurrence-plot-based
measures of complexity and their application to heart-rate-variability data, Phys. Rev. E
66 (2002) 026702. doi:10.1103/PhysRevE.66.026702.
[28] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E.
Mietus, G. B. Moody, C.-K. Peng, H. E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet:
components of a new research resource for complex physiologic signals, Circulation 101
(2000) e215–e220. doi:10.1161/01.CIR.101.23.e215.
[29] M. Kirchner, P. Schubert, M. Liebherr, C. T. Haas, Detrended Fluctuation Analysis and
Adaptive Fractal Analysis of Stride Time Data in Parkinson’s Disease: Stitching Together
Short Gait Trials, PLOS ONE 9 (2014) 1–6. doi:10.1371/journal.pone.0085787.
[30] N. Marwan, C. L. Webber, Mathematical and Computational Foundations of Recurrence
Quantifications, in: C. L. Webber, N. Marwan (Eds.), Recurrence Quantification Analysis:
Theory and Best Practices, Springer International Publishing, Cham, 2015, pp. 3–43. doi:10.
1007/978- 3- 319- 07155- 8_1.
[31] U.S. Energy Information Administration, Natural gas spot and futures prices (nymex), 1997.
URL: https://www.eia.gov/dnav/ng/NG_PRI_FUT_S1_W.htm.
[32] U.S. Energy Information Administration, Spot prices for crude oil and petroleum products,
1986. URL: https://www.eia.gov/dnav/pet/pet_pri_spt_s1_d.htm.
[33] V. N. Soloviev, A. O. Bielinskyi, N. A. Kharadzjan, Coverage of the coronavirus pandemic
through entropy measures, CEUR Workshop Proceedings 2832 (2020) 24–42. URL: https:
//ceur-ws.org/Vol-2832/paper02.pdf.
[34] A. O. Bielinskyi, V. N. Soloviev, Complex network precursors of crashes and critical events
in the cryptocurrency market, CEUR Workshop Proceedings 2292 (2018) 37 – 45. URL:
https://ceur-ws.org/Vol-2292/paper02.pdf.
[35] A. O. Bielinskyi, A. V. Matviychuk, O. A. Serdyuk, S. O. Semerikov, V. V. Solovieva, V. N.
Soloviev, Correlational and Non-extensive Nature of Carbon Dioxide Pricing Market, in:
O. Ignatenko, V. Kharchenko, V. Kobets, H. Kravtsov, Y. Tarasich, V. Ermolayev, D. Esteban, V. Yakovyna, A. Spivakovsky (Eds.), ICTERI 2021 Workshops, volume 1635 CCIS of
Communications in Computer and Information Science, Springer International Publishing,
Cham, 2022, pp. 183–199. doi:10.1007/978- 3- 031- 14841- 5_12.
[36] A. O. Bielinskyi, O. A. Serdyuk, S. O. Semerikov, V. N. Soloviev, Econophysics of cryptocurrency crashes: a systematic review, in: A. E. Kiv, V. N. Soloviev, S. O. Semerikov (Eds.),
Proceedings of the Selected and Revised Papers of 9th International Conference on Monitoring, Modeling & Management of Emergent Economy (M3E2-MLPEED 2021), Odessa,
Ukraine, May 26-28, 2021, volume 3048 of CEUR Workshop Proceedings, CEUR-WS.org,
2021, pp. 31–133. URL: http://ceur-ws.org/Vol-3048/paper03.pdf.
[37] A. O. Bielinskyi, S. V. Hushko, A. V. Matviychuk, O. A. Serdyuk, S. O. Semerikov, V. N.
Soloviev, Irreversibility of financial time series: a case of crisis, in: A. E. Kiv, V. N.
Soloviev, S. O. Semerikov (Eds.), Proceedings of the Selected and Revised Papers of 9th
International Conference on Monitoring, Modeling & Management of Emergent Economy
(M3E2-MLPEED 2021), Odessa, Ukraine, May 26-28, 2021, volume 3048 of CEUR Workshop
Proceedings, CEUR-WS.org, 2021, pp. 134–150. URL: http://ceur-ws.org/Vol-3048/paper04.
pdf.
[38] A. Bielinskyi, S. Semerikov, O. Serdyuk, V. Solovieva, V. N. Soloviev, L. Pichl, Econophysics
of sustainability indices, in: A. Kiv (Ed.), Proceedings of the Selected Papers of the Special
Edition of International Conference on Monitoring, Modeling & Management of Emergent
Economy (M3E2-MLPEED 2020), Odessa, Ukraine, July 13-18, 2020, volume 2713 of CEUR
Workshop Proceedings, CEUR-WS.org, 2020, pp. 372–392. URL: http://ceur-ws.org/Vol-2713/
paper41.pdf.
[39] T. Fang, C. Zheng, D. Wang, Forecasting the crude oil prices with an EMD-ISBM-FNN
model, Energy 263 (2023) 125407. doi:10.1016/j.energy.2022.125407.
[40] Y. Zou, L. Yu, K. He, Forecasting crude oil risk: A multiscale bidirectional generative
adversarial network based approach, Expert Systems with Applications 212 (2023) 118743.
doi:10.1016/j.eswa.2022.118743.
[41] H. Guliyev, E. Mustafayev, Predicting the changes in the WTI crude oil price dynamics using
machine learning models, Resources Policy 77 (2022) 102664. doi:10.1016/j.resourpol.
2022.102664.
[42] A. E. Kiv, V. N. Soloviev, S. O. Semerikov, H. B. Danylchuk, L. O. Kibalnyk, A. V. Matviychuk,
A. M. Striuk, Machine learning for prediction of emergent economy dynamics III, in: A. E.
Kiv, V. N. Soloviev, S. O. Semerikov (Eds.), Proceedings of the Selected and Revised Papers
of 9th International Conference on Monitoring, Modeling & Management of Emergent
Economy (M3E2-MLPEED 2021), Odessa, Ukraine, May 26-28, 2021, volume 3048 of CEUR
Workshop Proceedings, CEUR-WS.org, 2021, pp. i–xxxi. URL: http://ceur-ws.org/Vol-3048/
paper00.pdf.
[43] A. Bielinskyi, V. Soloviev, S. Semerikov, V. Solovieva, Identifying stock market crashes by
fuzzy measures of complexity, Neiro-Nechitki Tekhnolohii Modelyuvannya v Ekonomitsi
2021 (2021) 3–45. doi:10.33111/nfmte.2021.003.
[44] M. Bondarenko, Modeling relation between at-the-money local volatility and realized
volatility of stocks, Neiro-Nechitki Tekhnolohii Modelyuvannya v Ekonomitsi 2021 (2021)
46–66. doi:10.33111/nfmte.2021.046.
[45] T. Kmytiuk, G. Majore, Time series forecasting of agricultural product prices using Elman
and Jordan recurrent neural networks, Neiro-Nechitki Tekhnolohii Modelyuvannya v
Ekonomitsi 2021 (2021) 67–85. doi:10.33111/nfmte.2021.067.
[46] V. Kobets, O. Novak, EU countries clustering for the state of food security using machine
learning techniques, Neiro-Nechitki Tekhnolohii Modelyuvannya v Ekonomitsi 2021 (2021)
86–118. doi:10.33111/nfmte.2021.086.
[47] H. Kucherova, Y. Honcharenko, D. Ocheretin, O. Bilska, Fuzzy logic model of usability of
websites of higher education institutions in the context of digitalization of educational
services, Neiro-Nechitki Tekhnolohii Modelyuvannya v Ekonomitsi 2021 (2021) 119–135.
doi:10.33111/nfmte.2021.119.
[48] D. Lukianenko, I. Strelchenko, Neuromodeling of features of crisis contagion on financial
markets between countries with different levels of economic development, Neiro-Nechitki
Tekhnolohii Modelyuvannya v Ekonomitsi 2021 (2021) 136–163. doi:10.33111/nfmte.
2021.136.
[49] I. Miroshnychenko, T. Kravchenko, Y. Drobyna, Forecasting electricity generation from
renewable sources in developing countries (on the example of Ukraine), Neiro-Nechitki
Tekhnolohii Modelyuvannya v Ekonomitsi 2021 (2021) 164–198. doi:10.33111/nfmte.2021.164.
[50] S. Ashe, P. Egan, Examining financial and business cycle interaction using cross recurrence plot analysis, Finance Research Letters 51 (2023) 103461. doi:10.1016/j.frl.2022.
103461.
[51] Q. He, J. Huang, A method for analyzing correlation between multiscale and multivariate systems—Multiscale multidimensional cross recurrence quantification (MMDCRQA),
Chaos, Solitons & Fractals 139 (2020) 110066. doi:10.1016/j.chaos.2020.110066.
[52] M. C. Romano, M. Thiel, J. Kurths, W. von Bloh, Multivariate recurrence plots, Physics
Letters A 330 (2004) 214–223. doi:10.1016/j.physleta.2004.07.066.