Description:
Abelson, H., Sussman, G. J., & Sussman, J. (1996). Structure and Interpretation of Computer Programs (2nd ed.). Cambridge: MIT Press.
Abraham, T. H. (2002). (Physio)logical circuits: The intellectual origins of the McCulloch-Pitts neural networks. Journal of the History of the Behavioral Sciences, 38(1), 3–25. DOI: https://doi.org/10.1002/jhbs.1094. DOI: https://doi.org/10.1002/jhbs.1094
Anderson, E. (1928). The Problem of Species in the Northern Blue Flags, Iris versicolor L. and Iris virginica L. Annals of the Missouri Botanical Garden, 15(3), 241–332. DOI: https://doi.org/10.2307/2394087. DOI: https://doi.org/10.2307/2394087
Anderson, E. (1935). The Irises of the Gaspe Peninsula. Bulletin of the American Iris Society, 59, 2–5.
Anderson, E. (1936). The Species Problem in Iris. Annals of the Missouri Botanical Garden, 23(3), 457–469+471–483+485–501+503–509. DOI: https://doi.org/10.2307/2394164. DOI: https://doi.org/10.2307/2394164
Anderson, E. (1952). Plants, Man and Life. Boston: University of California Press. DOI: https://doi.org/10.1525/9780520312548
Ayed, A. S. (1997). Master thesis. Memorial University.
Buergermeister, J. J. (1990). Using Computer Spreadsheets for Instruction in Cost Control Curriculum at the Undergraduate Level. In D. W. Dalton (Ed.), Proceedings of the 32nd Annual International Conference of the Association for the Development of Computer-Based Instructional Systems, San Diego, California, October 29-November 1, 1990 (pp. 214–220). Columbus: ADCIS International.
Chernoff, H. (1973). The Use of Faces to Represent Points in k-Dimensional Space Graphically. Journal of the American Statistical Association, 68(342), 361-368. DOI: https://doi.org/10.1080/01621459.1973.10482434. DOI: https://doi.org/10.1080/01621459.1973.10482434
Cowan, J. D. (1998). Interview with J. A. Anderson and E. Rosenfeld. In J. A. Anderson & E. Rosenfeld (Eds.), Talking nets: An oral history of neural networks (pp. 97–124). Cambridge: MIT Press.
Cull, P. (2007). The mathematical biophysics of Nicolas Rashevsky. BioSystems, 88(3), 178–184. DOI: https://doi.org/10.1016/j.biosystems.2006.11.003. DOI: https://doi.org/10.1016/j.biosystems.2006.11.003
Eberhart, R. C. & Dobbins, R. W. (1990). Background and History. In R.C. Eberhart & R. W. Dobbins (Eds.), Neural Network PC Tools: A Practical Guide (pp. 9–34). San Diego: Academic Press. DOI: https://doi.org/10.1016/C2009-0-21624-2. DOI: https://doi.org/10.1016/B978-0-12-228640-7.50007-6
Fisher, R. A. (1936). The Use of Multiple Measurements in Taxonomic Problems. Annals of Eugenics, 7(2), 179–188. DOI: https://doi.org/10.1111/j.1469-1809.1936.tb02137.x. DOI: https://doi.org/10.1111/j.1469-1809.1936.tb02137.x
Freedman, R. S., Frail, R. P., Schneider, F. T., & Schnitta, B. (1991). Expert systems in spreadsheets: modeling the Wall Street user domain. In Proceedings First International Conference on Artificial Intelligence Applications on Wall Street (pp. 296-301). DOI: https://doi.org/10.1109/AIAWS.1991.236586. DOI: https://doi.org/10.1109/AIAWS.1991.236586
Hegazy, T. & Ayed, A. (1998). Neural Network Model for Parametric Cost Estimation of Highway Projects. Journal of Construction Engineering and Management, 124(3), 210–218. DOI: https://doi.org/10.1061/(ASCE)0733-9364(1998)124:3(210). DOI: https://doi.org/10.1061/(ASCE)0733-9364(1998)124:3(210)
Hewett, T. T. (1985a). Teaching Students to Model Neural Circuits and Neural Networks Using an Electronic Spreadsheet Simulator. Behavior Research Methods, Instruments, & Computers, 17(2), 339–344. DOI: https://doi.org/10.3758/BF03214406. DOI: https://doi.org/10.3758/BF03214406
Hewett, T. T. (1985b). Using an Electronic Spreadsheet Simulator to Teach Neural Modeling of Visual Phenomena. Philadelphia: Drexel University.
Householder, A. S. (1940). A neural mechanism for discrimination: II. Discrimination of weights. Bulletin of Mathematical Biophysics, 2(1), 1–13. DOI: https://doi.org/10.1007/BF02478027. DOI: https://doi.org/10.1007/BF02478027
Householder, A. S. (1941). A theory of steady-state activity in nerve-fiber networks I: Definitions and Preliminary Lemmas. Bulletin of Mathematical Biophysics, 3(2), 63–69. DOI: https://doi.org/10.1007/BF02478220. DOI: https://doi.org/10.1007/BF02478220
Householder, A. S. & Landahl, H. D. (1945). Mathematical Biophysics of the Central Nervous System. Bloomington: Principia Press.
James, W. (1890). The Principles of Psychology. New York: Henry Holt and Company. DOI: https://doi.org/10.1037/10538-000
James, W. (1892). Psychology. New York: Henry Holt and Company.
Johnston, S. J. (1991). InfoWorld, 13(7), 14. DOI: https://doi.org/10.1016/0958-2118(91)90104-3
Kendrick, D. A., Mercado, P. R., & Amman, H. M. (2006). Computational Economics. Princeton: Princeton University Press. DOI: https://doi.org/10.1515/9781400841349
Landahl, H. D. (1947). A matrix calculus for neural nets: II. Bulletin of Mathematical Biophysics, 9(2), 99–108. DOI: https://doi.org/10.1007/BF02478296. DOI: https://doi.org/10.1007/BF02478296
Landahl, H. D., McCulloch, W. S., & Pitts, W. (1943). A statistical consequence of the logical calculus of nervous nets. Bulletin of Mathematical Biophysics, 5(4), 135–137. DOI: https://doi.org/10.1007/BF02478260. DOI: https://doi.org/10.1007/BF02478260
Landahl, H. D. & Runge, R. (1946). Outline of a matrix calculus for neural nets. Bulletin of Mathematical Biophysics, 8(2), 75–81. DOI: https://doi.org/10.1007/BF02478464. DOI: https://doi.org/10.1007/BF02478464
Markova, O., Semerikov, S., & Popel, M. (2018). CoCalc as a Learning Tool for Neural Network Simulation in the Special Course “Foundations of Mathematic Informatics”. CEUR Workshop Proceedings, 2104, 204. Retrieved from http://ceur-ws.org/Vol-2104/paper_204.pdf. DOI: https://doi.org/10.31812/0564/2250
Markova, O. M., Semerikov, S. O., Striuk, A. M., Shalatska, H. M., Nechypurenko, P. P., & Tron, V. V. (2019). Implementation of cloud service models in training of future information technology specialists. CEUR Workshop Proceedings, 2433, 499-515. Retrieved from http://ceur-ws.org/Vol-2433/paper34.pdf. DOI: https://doi.org/10.55056/cte.409
McCulloch, W. C. & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics, 5(4), 115–133. DOI: https://doi.org/10.1007/BF02478259. DOI: https://doi.org/10.1007/BF02478259
Mitchell, T. M. (2017). Key Ideas in Machine Learning. Retrieved from http://www.cs.cmu.edu/%7Etom/mlbook/keyIdeas.pdf.
Permiakova, O. S. & Semerikov, S. O. (2008). Zastosuvannia neironnykh merezh u zadachakh prohnozuvannia (The use of neural networks in forecasting problems). In Materials of the International Scientific and Practical Conference “Young scientist of the XXI century”, KTU, Kryviy Rih, 17–18 November 2008.
Pitts, W. (1942a). Some observations on the simple neuron circuit. Bulletin of Mathematical Biophysics, 4(3), 121–129. DOI: https://doi.org/10.1007/BF02477942. DOI: https://doi.org/10.1007/BF02477942
Pitts, W. (1942b). The linear theory of neuron networks: The static problem. Bulletin of Mathematical Biophysics, 4(4), 169–175. DOI: https://doi.org/10.1007/BF02478112. DOI: https://doi.org/10.1007/BF02478112
Pitts, W. (1943a). A general theory of learning and conditioning: Part I. Psychometrika, 8(1), 1–18. DOI: https://doi.org/10.1007/BF02288680. DOI: https://doi.org/10.1007/BF02288680
Pitts, W. (1943b). A general theory of learning and conditioning: Part II. Psychometrika, 8(2), 131–140. DOI: https://doi.org/10.1007/BF02288697. DOI: https://doi.org/10.1007/BF02288697
Pitts, W. (1943c). The linear theory of neuron networks: The dynamic problem. Bulletin of Mathematical Biophysics, 5(1), 23–31. DOI: https://doi.org/10.1007/BF02478116. DOI: https://doi.org/10.1007/BF02478116
Pitts, W. & McCulloch, W. S. (1947). How we know universals the perception of auditory and visual forms. Bulletin of Mathematical Biophysics, 9(3), 127–147. DOI: https://doi.org/10.1007/BF02478291. DOI: https://doi.org/10.1007/BF02478291
Rashevsky, N. (1933). Outline of a physico-mathematical theory of excitation and inhibition. Protoplasma, 20(1), 42–56. DOI: https://doi.org/10.1007/BF02674811. DOI: https://doi.org/10.1007/BF02674811
Rashevsky, N. (1945a). Mathematical biophysics of abstraction and logical thinking. Bulletin of Mathematical Biophysics, 7(3), 133–148. DOI: https://doi.org/10.1007/BF02478314. DOI: https://doi.org/10.1007/BF02478314
Rashevsky, N. (1945b). Some remarks on the boolean algebra of nervous nets in mathematical biophysics. Bulletin of Mathematical Biophysics, 7(4), 203–211. DOI: https://doi.org/10.1007/BF02478425. DOI: https://doi.org/10.1007/BF02478425
Rashevsky, N. (1946). The neural mechanism of logical thinking. Bulletin of Mathematical Biophysics, 8(1), 29–40. DOI: https://doi.org/10.1007/BF02478425. DOI: https://doi.org/10.1007/BF02478469
Rienzo, T. F. & Athappilly, K. K. (2012). Introducing Artificial Neural Networks through a Spread-sheet Model. Decision Sciences Journal of Innovative Education, 10(4), 515–520. DOI: https://doi.org/10.1111/j.1540-4609.2012.00363.x. DOI: https://doi.org/10.1111/j.1540-4609.2012.00363.x
Ruggiero, M. (1993). U.S. Patent No. 5,241,620.
Ruggiero, M. A. (1997). Cybernetic Trading Strategies: Developing a Profitable Trading System with State-of-the-Art Technologies. New York: John Wiley & Sons.
Schwab, K. & Davis, N. (2018). Shaping the Fourth Industrial Revolution. London: Portfolio Penguin.
Semerikov, S. O. & Teplytskyi, I. O. (2018). Metodyka uvedennia osnov Machine learning u shkilnomu kursi informatyky (Methods of introducing the basics of Machine learning in the school course of informatics). In Problems of informatization of the educational process in institutions of general secondary and higher education. Ukrainian scientific and practical conference, Kyiv, October 09, 2018 (pp. 18–20). Kyiv: Vyd-vo NPU imeni M. P. Drahomanova.
Semerikov, S. O., Teplytskyi, I. O., Yechkalo, Yu. V., & Kiv, A. E. (2018). Computer Simulation of Neural Networks Using Spreadsheets: The Dawn of the Age of Camelot. CEUR Workshop Proceedings, 2257, 14. Retrieved from http://ceur-ws.org/Vol-2257/paper14.pdf. DOI: https://doi.org/10.31812/123456789/2648
Shimbel, A. & Rapoport, A. (1948). A statistical approach to the theory of the central nervous system. Bulletin of Mathematical Biophysics, 10(2), 41–55. DOI: https://doi.org/10.1007/BF02478329. DOI: https://doi.org/10.1007/BF02478329
Stebbins, G. L. (1978). Edgar Anderson 1897-1969. Washington: National Academy of Sciences.
Sussman, G. J. & Wisdom, J. (2015). Structure and interpretation of classical mechanics (2nd ed.). Cambridge: MIT Press.
Teplytskyi, I. O. (2010). Elementy kompiuternoho modeliuvannia (Elements of computer simulation) (2nd ed.). Kryvyi Rih: KSPU.
Teplytskyi, I. O., Teplytskyi, O. I., & Humeniuk, A. P. (2008). Simulation environments: from replacement to integration. New computer technology, 6, 67–68.
Wei, T. (1948). On matrices of neural nets. Bulletin of Mathematical Biophysics, 10(2), 63–67. DOI: https://doi.org/10.1007/BF02477433. DOI: https://doi.org/10.1007/BF02477433
Werbos, P. J. (1989). Maximizing long-term gas industry profits in two minutes in Lotus using neural network methods. Transactions on Systems Man and Cybernetics, 19(2), 315–333. DOI: https://doi.org/10.1109/21.31036. DOI: https://doi.org/10.1109/21.31036
Young, G. (1941). On reinforcement and interference between stimuli. Bulletin of Mathematical Biophysics, 3(1), 5–12. DOI: https://doi.org/10.1007/BF02478102. DOI: https://doi.org/10.1007/BF02478102
Zaremba, T. (1990). Case Study III: Technology in Search of a Buck. In R.C. Eberhart & R. W. Dobbins (Eds.), Neural Network PC Tools: A Practical Guide (pp. 251–283). San Diego: Academic Press. DOI: https://doi.org/10.1016/C2009-0-21624-2. DOI: https://doi.org/10.1016/B978-0-12-228640-7.50018-0