Description:
Alptekin, O., Alptekin, N., Saraç, B.: Evaluation of low carbon development of European union countries and turkey using grey relational analysis. Tehnicki Vjesnik 25(5), 1497–1505 (2018). https://doi.org/10.17559/TV-20170126185956 Bielinskyi, A.O., et al.: Predictors of oil shocks. Econophysical approach in environmental science. In: IOP Conference Series: Earth and Environmental Science, vol. 628, p. 012019 (2021). https://doi.org/10.1088/1755-1315/628/1/012019 Cong, R., Lo, A.: Emission trading and carbon market performance in Shenzhen, China. Appl. Energy 193(C), 414–425 (2017). http://EconPapers.repec.org/RePEc:eee:appene:v:193:y:2017:i:c:p:414--425 Dyson, F.J.: Statistical theory of the energy levels of complex systems. I. J. Math. Phys. 3(1), 140–156 (1962). https://doi.org/10.1063/1.1703773 Jiang, M., An, H., Gao, X., Liu, S., Xi, X.: Factors driving global carbon emissions: a complex network perspective. Resour. Conserv. Recycl. 146, 431–440 (2019). https://doi.org/10.1016/j.resconrec.2019.04.012 Jiang, S., Guo, J., Yang, C., Tian, L.: Random matrix analysis of cross-correlation in energy market of Shanxi, China. Int. J. Nonlinear Sci. 23(2), 96–101 (2017) Kantelhardt, J.W., Zschiegner, S.A., Koscielny-Bunde, E., Havlin, S., Bunde, A., Stanley, H.: Multifractal detrended fluctuation analysis of nonstationary time series. Physica A 316(1), 87–114 (2002). https://doi.org/10.1016/S0378-4371(02)01383-3 Karatasou, S., Santamouris, M.: Multifractal analysis of high-frequency temperature time series in the urban environment. Climate 6(2) (2018). https://doi.org/10.3390/cli6020050. http://www.mdpi.com/2225-1154/6/2/50 Kisel’ák, J., Dušek, J., Stehlík, M.: Recurrence of CH4 and CO2 emissions measured by a non-steady state flow-through chamber system. In: AIP Conference Proceedings, vol. 2046, no. 1, p. 020046 (2018). https://doi.org/10.1063/1.5081566 Krishnamurti, C., Hoque, A.: Efficiency of European emissions markets: lessons and implications. Energy Policy 39(10), 6575–6582 (2011). https://doi.org/10.1016/j.enpol.2011.07.062. Sustainability of biofuels Laloux, L., Cizeau, P., Bouchaud, J.P., Potters, M.: Noise dressing of financial correlation matrices. Phys. Rev. Lett. 83(7), 1467–1470 (1999). https://doi.org/10.1103/physrevlett.83.1467 Li, Y.L., Chen, B., Chen, G.Q.: Carbon network embodied in international trade: global structural evolution and its policy implications. Energy Policy 139, 111316 (2020). https://doi.org/10.1016/j.enpol.2020.111316 Liang, J.: Analysis and test of multifractal characteristics of the European carbon emissions market-based on the framework of wavelet leaders. Low Carbon Econ. 07(01), 54–61 (2016). https://doi.org/10.4236/lce.2016.71006 Liu, L., et al.: Household CO2 emissions: current status and future perspectives. Int. J. Environ. Res. Public Health 17(19) (2020). https://doi.org/10.3390/ijerph17197077. http://www.mdpi.com/1660-4601/17/19/7077 Lyra, M.L., Tsallis, C.: Nonextensivity and multifractality in low-dimensional dissipative systems. Phys. Rev. Lett. 80, 53–56 (1998). https://doi.org/10.1103/PhysRevLett.80.53 Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., Kurths, J.: Recurrence-plot-based measures of complexity and their application to heart-rate-variability data. Phys. Rev. E 66, 026702 (2002). https://doi.org/10.1103/PhysRevE.66.026702 The Mathworks Inc., Natick, Massachusetts: MATLAB version 8.6.0.267246 (R2015b) (2015) Mehta, M.L. (ed.): Random Matrices (Revised and Enlarged Second Edition). Academic Press, San Diego, revised and enlarged 2nd edn. (1991). https://doi.org/10.1016/C2009-0-22297-5 Nikolis, G., Prigogine, I.: Exploring Complexity. An Introduction. W. H, Freeman and Company (1989) Nogueira, D.C.S., et al.: Multifractal and joint multifractal analysis of the spatial variability of CO2 emission and other soil properties. GU General Assembly 2021 (online) (EGU21-16174) (2021). https://doi.org/10.5194/egusphere-egu21-16174 Pavlos, G., et al.: Tsallis non-extensive statistics and solar wind plasma complexity. Physica A 422, 113–135 (2015). https://doi.org/10.1016/j.physa.2014.12.007 Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L.A.N., Guhr, T., Stanley, H.E.: Random matrix approach to cross correlations in financial data. Phys. Rev. E 65, 066126 (2002). https://doi.org/10.1103/PhysRevE.65.066126 Shen, J., Zheng, B.: Cross-correlation in financial dynamics. EPL (Europhysics Letters) 86(4), 48005 (2009). https://doi.org/10.1209/0295-5075/86/48005 Soloviev, V., Bielinskyi, A., Kharadzjan, N.: Coverage of the coronavirus pandemic through entropy measures. In: CEUR Workshop Proceedings, vol. 2832, pp. 24–42 (2020) Soloviev, V., Bielinskyi, A., Solovieva, V.: Entropy analysis of crisis phenomena for DJIA index. In: CEUR Workshop Proceedings, vol. 2393, pp. 434–449 (2019) Soloviev, V.N., Belinskiy, A.: Complex systems theory and crashes of cryptocurrency market. In: Ermolayev, V., Suárez-Figueroa, M.C., Yakovyna, V., Mayr, H.C., Nikitchenko, M., Spivakovsky, A. (eds.) ICTERI 2018. CCIS, vol. 1007, pp. 276–297. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13929-2_14 Soloviev, V., Solovieva, V., Tuliakova, A., Hostryk, A., Pichl, L.: Complex networks theory and precursors of financial crashes. In: CEUR Workshop Proceedings, vol. 2713, pp. 53–67 (2020) Soloviev, V., Yevtushenko, S., Batareyev, V.: Comparative analysis of the cryptocurrency and the stock markets using the Random Matrix Theory. In: CEUR Workshop Proceedings, vol. 2546, pp. 87–100 (2019) Soloviev, V.N., Bielinskyi, A., Serdyuk, O., Solovieva, V., Semerikov, S.: Lyapunov exponents as indicators of the stock market crashes. In: CEUR Workshop Proceedings, vol. 2732, pp. 455–470 (2020) Sparavigna, A.C.: Carbon dioxide concentration and emissions in atmosphere: trends and recurrence plots. Int. J. Sci. 3(10), 8–15 (2014). https://doi.org/10.18483/ijSci.582. http://ideas.repec.org/a/adm/journl/v3y2014i10p8-15.html Suh, D.H.: An entropy approach to regional differences in carbon dioxide emissions: implications for ethanol usage. Sustainability 10(1) (2018). https://doi.org/10.3390/su10010243. http://www.mdpi.com/2071-1050/10/1/243 UNFCCC: Adoption of the Paris agreement (2015). http://unfccc.int/resource/docs/2015/cop21/eng/l09r01.pdf Urama, T., Ezepue, P., Nnanwa, C.: Analysis of cross-correlations in emerging markets using random matrix theory. J. Math. Financ. 7, 291–307 (2017). https://doi.org/10.4236/jmf.2017.72015 Wang, G.J., Xie, C., Chen, S., Han, F.: Cross-correlations between energy and emissions markets: new evidence from fractal and multifractal analysis. Math. Problems Eng. 2014, 1–13 (2014). https://doi.org/10.1155/2014/197069. https://ideas.repec.org/a/hin/jnlmpe/197069.html Wigner, E.P.: On a class of analytic functions from the quantum theory of collisions. Ann. Math. 53(1), 36–67 (1951). http://www.jstor.org/stable/1969342 Zbilut, J.P., Webber, C.L.: Embeddings and delays as derived from quantification of recurrence plots. Phys. Lett. A 171(3), 199–203 (1992). https://doi.org/10.1016/0375-9601(92)90426-M Zou, S., Zhang, T.: Cross-correlation analysis between energy and carbon markets in China based on multifractal theory. Int. J. Low-Carbon Technol. 15(3), 389–397 (2020). https://doi.org/10.1093/ijlct/ctaa010