Description:
1. Acharya, U.R., Sree, S.V., Chattopadhyay, S., Yu, W., & Ang, P.C.A.
(2011). Application of recurrence quantification analysis for the automated
identification of epileptic EEG signals. International journal of neural
systems, 21(03), 199-211. https://doi.org/10.1142/s0129065711002808
2. Aldalou, E., & Perçin, S. (2020). Application of integrated fuzzy
MCDM approach for financial performance evaluation of Turkish
technology sector. International Journal of Procurement Management,
13(1), 1-23. https://doi.org/10.1504/ijpm.2020.105198
3. Al-Sharhan, S., Karray, F., Gueaieb, W., & Basir, O. (2001). Fuzzy
entropy: a brief survey. In Proceedings of the 10th IEEE international
conference on fuzzy systems (Cat. No. 01CH37297): Vol. 3 (pp. 1135-1139).
IEEE. https://doi.org/10.1109/FUZZ.2001.1008855
4. Alves, P. (2019). Chaos in historical prices and volatilities with five-
dimensional Euclidean spaces. Chaos, Solitons & Fractals: X, 1, Article
100002. https://doi.org/10.1016/j.csfx.2019.100002
5. Argyroudis, G. S., & Siokis, F. M. (2019). Spillover effects of Great
Recession on Hong-Kong’s Real Estate Market: An analysis based on
Causality Plane and Tsallis Curves of Complexity–Entropy. Physica A:
Statistical
Mechanics
and
its
Applications,
524,
576–586.
https://doi.org/10.1016/j.physa.2019.04.052
6. Azami, H., Fernández, A., & Escudero, J. (2017). Refined multiscale
fuzzy entropy based on standard deviation for biomedical signal analysis.
Medical & Biological Engineering & Computing, 55(11), 2037–2052.
https://doi.org/10.1007/s11517-017-1647-5
7. Bandt, C., & Pompe, B. (2002). Permutation Entropy: A Natural
Complexity Measure for Time Series. Physical Review Letters, 88(17),
Article 174102. https://doi.org/10.1103/physrevlett.88.174102
8. Bastos, J. A., & Caiado, J. (2011). Recurrence quantification analysis
of global stock markets. Physica A: Statistical Mechanics and its Appli-
cations, 390(7), 1315–1325. https://doi.org/10.1016/j.physa.2010.12.008
9. Bielinskyi, A., Semerikov, S., Serdyuk, O., Solovieva, V.,
Soloviev, V., & Pichl, L. (2020). Econophysics of sustainability indices.
CEUR Workshop Proceedings, 2713, 372-392. http://ceur-ws.org/Vol-
2713/paper41.pdf
10. Bielinskyi, A., & Soloviev, V. (2018). Complex network precursors of
crashes and critical events in the cryptocurrency market. CEUR Workshop
Proceedings, 2292, 37-45. http://ceur-ws.org/Vol-2292/paper02.pdf
11. Bielinskyi, A., Soloviev, V., Semerikov, S., & Solovieva, V. (2019).
Detecting stock crashes using Levy distribution. CEUR Workshop
Proceedings, 2422, 420-433. http://ceur-ws.org/Vol-2422/paper34.pdf
12. Boccara, N. (2010). Modeling complex systems. Springer Science &
Business Media. https://doi.org/10.1007/978-1-4419-6562-2
13. Castiglioni, P., & Di Rienzo, M. (2008). How the threshold “r”
influences approximate entropy analysis of heart-rate variability. In
Proceedings of the 2008 Computers in Cardiology (pp. 561-564). IEEE.
https://doi.org/10.1109/CIC.2008.4749103
14. Chen, W., Wang, Z., Xie, H., & Yu, W. (2007). Characterization of
Surface EMG Signal Based on Fuzzy Entropy. IEEE Transactions on Neural
Systems
and
Rehabilitation
Engineering,
15(2),
266–272.
https://doi.org/10.1109/tnsre.2007.897025
15. Chen, W., Zhuang, J., Yu, W., & Wang, Z. (2009). Measuring
complexity using FuzzyEn, ApEn, and SampEn. Medical Engineering &
Physics, 31(1), 61–68. https://doi.org/10.1016/j.medengphy.2008.04.005
16. Collet, P., Eckmann, J. P., & Koch, H. (1981). Period doubling
bifurcations for families of maps on R n . Journal of Statistical Physics,
25(1), 1–14. https://doi.org/10.1007/bf01008475
17. De Luca, A., & Termini, S. (1972). A definition of a nonprobabilistic
entropy in the setting of fuzzy sets theory. Information and Control, 20(4),
301–312. https://doi.org/10.1016/s0019-9958(72)90199-4
18. Duran, N.D., Dale, R., Kello, C.T., Street, C.N.H., & Richardson, D.C.
(2013). Exploring the movement dynamics of deception. Frontiers in
Psychology, 4, Article 140. https://doi.org/10.3389/fpsyg.2013.00140
19. Eckmann, J. P., & Ruelle, D. (1985). Ergodic theory of chaos and
strange attractors. Reviews of Modern Physics, 57(3), 617–656.
https://doi.org/10.1103/revmodphys.57.617
20. Eckmann, J. P., Kamphorst, S. O., & Ruelle, D. (1987). Recurrence
Plots of Dynamical Systems. Europhysics Letters, 4(9), 973–977.
https://doi.org/10.1209/0295-5075/4/9/004
21. Elias, J., & Narayanan Namboothiri, V. N. (2013). Cross-recurrence
plot quantification analysis of input and output signals for the detection of
chatter
in
turning.
Nonlinear
Dynamics,
76(1),
255–261.
https://doi.org/10.1007/s11071-013-1124-0
22. Eroglu, D., McRobie, F. H., Ozken, I., Stemler, T., Wyrwoll, K. H.,
Breitenbach, S. F. M., Marwan, N., & Kurths, J. (2016). See–saw rela-
tionship of the Holocene East Asian–Australian summer monsoon. Nature
Communications, 7(1), Article 12929. https://doi.org/10.1038/ncomms12929
23. Farmer, J. D. (1982). Information Dimension and the Probabilistic
Structure of Chaos. Zeitschrift Für Naturforschung A, 37(11), 1304–1326.
https://doi.org/10.1515/zna-1982-1117
24. García-Ochoa, E., González-Sánchez, J., Acuña, N., & Euan, J. (2008).
Analysis of the dynamics of Intergranular corrosion process of sensitised 304
stainless steel using recurrence plots. Journal of Applied Electrochemistry,
39(5), 637–645. https://doi.org/10.1007/s10800-008-9702-4
25. Gardini, L., Lupini, R., & Messia, M. G. (1989). Hopf bifurcation
and transition to chaos in Lotka-Volterra equation. Journal of Mathematical
Biology, 27(3), 259–272. https://doi.org/10.1007/bf00275811
26. GitHub. (2021). Complex systems measures. https://github.com/
Butman2099/Complex-systems-measures
27. GitHub. (2021). EntropyHub: An open-source toolkit for entropic
time series analysis. https://github.com/MattWillFlood/EntropyHub
28. Graf, S. (1987). Statistically self-similar fractals. Probability Theory
and Related Fields, 74(3), 357–392. https://doi.org/10.1007/bf00699096
29. Grassberger, P., & Procaccia, I. (1983). Characterization of Strange
Attractors.
Physical
Review
Letters,
50(5),
346–349.
https://doi.org/10.1103/physrevlett.50.346
30. Grebogi, C., Ott, E., Pelikan, S., & Yorke, J. A. (1984). Strange
attractors that are not chaotic. Physica D: Nonlinear Phenomena, 13(1-2),
261-268. https://doi.org/10.1016/0167-2789(84)90282-3
31. Harris, P., Litak, G., Iwaniec, J., & Bowen, C. R. (2016). Recurrence
Plot and Recurrence Quantification of the Dynamic Properties of Cross-
Shaped Laminated Energy Harvester. Applied Mechanics and Materials,
849, 95–105. https://doi.org/10.4028/www.scientific.net/amm.849.95
32. He, S., Sun, K., & Wang, R. (2018). Fractional fuzzy entropy
algorithm and the complexity analysis for nonlinear time series. The
European Physical Journal Special Topics, 227(7), 943-957.
https://doi.org/10.1140/epjst/e2018-700098-x
33. Hou, Y., Aldrich, C., Lepkova, K., Machuca, L., & Kinsella, B.
(2016). Monitoring of carbon steel corrosion by use of electrochemical noise
and recurrence quantification analysis. Corrosion Science, 112, 63–72.
https://doi.org/10.1016/j.corsci.2016.07.009
34. Humeau-Heurtier, A. (2015). The Multiscale Entropy Algorithm and
Its
Variants:
A
Review.
Entropy,
17(5),
3110–3123.
https://doi.org/10.3390/e17053110
35. Hutchinson, J. E. (1981). Fractals and Self Similarity. Indiana
University
Mathematics
Journal,
30(5),
713-747.
https://www.jstor.org/stable/24893080
36. Ishizaki, R., & Inoue, M. (2020). Analysis of local and global
instability in foreign exchange rates using short-term information entropy.
Physica A: Statistical Mechanics and its Applications, 555, Article 124595.
https://doi.org/10.1016/j.physa.2020.124595
37. Iwaniec, J., Uhl, T., Staszewski, W. J., & Klepka, A. (2012).
Detection of changes in cracked aluminium plate determinism by recurrence
analysis. Nonlinear Dynamics, 70(1), 125–140. https://doi.org/10.1007/
s11071-012-0436-9
38. Jahanshahi, H., Yousefpour, A., Wei, Z., Alcaraz, R., & Bekiros, S.
(2019). A financial hyperchaotic system with coexisting attractors: Dynamic
investigation, entropy analysis, control and synchronization. Chaos, Solitons
& Fractals, 126, 66–77. https://doi.org/10.1016/j.chaos.2019.05.023
39. Kantz, H. (1994). A robust method to estimate the maximal
Lyapunov exponent of a time series. Physics Letters A, 185(1), 77–87.
https://doi.org/10.1016/0375-9601(94)90991-1
40. Konvalinka, I., Xygalatas, D., Bulbulia, J., Schjødt, U.,
Jegindø, E. M., Wallot, S., van Orden, G., & Roepstorff, A. (2011).
Synchronized arousal between performers and related spectators in a fire-
walking ritual. Proceedings of the National Academy of Sciences of the
United States of America, 108(20), 8514–8519. https://doi.org/10.1073/
pnas.1016955108
41. Lahmiri, S., & Bekiros, S. (2017). Disturbances and complexity in
volatility time series. Chaos, Solitons & Fractals, 105, 38–42.
https://doi.org/10.1016/j.chaos.2017.10.006
42. Lahmiri, S., & Bekiros, S. (2019). Nonlinear analysis of Casablanca
Stock Exchange, Dow Jones and S&P500 industrial sectors with a
comparison. Physica A: Statistical Mechanics and its Applications, 539,
Article 122923. https://doi.org/10.1016/j.physa.2019.122923
43. Lahmiri, S., & Bekiros, S. (2020). Randomness, Informational
Entropy, and Volatility Interdependencies among the Major World Markets:
The Role of the COVID-19 Pandemic. Entropy, 22(8), Article 833.
https://doi.org/10.3390/e22080833
44. Lahmiri, S., Bekiros, S., & Avdoulas, C. (2018). Time-dependent
complexity measurement of causality in international equity markets:
A spatial approach. Chaos, Solitons & Fractals, 116, 215–219.
https://doi.org/10.1016/j.chaos.2018.09.030
45. Lahmiri, S., Uddin, G. S., & Bekiros, S. (2017). Nonlinear dynamics
of equity, currency and commodity markets in the aftermath of the global
financial crisis. Chaos, Solitons & Fractals, 103, 342–346.
https://doi.org/10.1016/j.chaos.2017.06.019
46. Lam, W. S., Lam, W. H., Jaaman, S. H., & Liew, K. F. (2021).
Performance Evaluation of Construction Companies Using Integrated
Entropy–Fuzzy VIKOR Model. Entropy, 23(3), Article 320.
https://doi.org/10.3390/e23030320
47. Li, P., Liu, C., Li, K., Zheng, D., Liu, C., & Hou, Y. (2014).
Assessing the complexity of short-term heartbeat interval series by
distribution entropy. Medical & Biological Engineering & Computing,
53(1), 77–87. https://doi.org/10.1007/s11517-014-1216-0
48. Li, S., Zhao, Z., Wang, Y., & Wang, Y. (2011). Identifying spatial
patterns of synchronization between NDVI and climatic determinants using
joint recurrence plots. Environmental Earth Sciences, 64(3), 851–859.
https://doi.org/10.1007/s12665-011-0909-z
49. List of stock market crashes and bear markets. (2021, August 1).
In Wikipedia.
https://en.wikipedia.org/w/index.php?title=List_of_stock_
market_crashes_and_bear_markets
50. Longwic, R., Litak, G., & Sen, A. K. (2009). Recurrence Plots for
Diesel Engine Variability Tests. Zeitschrift Für Naturforschung A, 64(1–2),
96–102. https://doi.org/10.1515/zna-2009-1-214
51. Mandelbrot, B. B. (1985). Self-Affine Fractals and Fractal
Dimension. Physica Scripta, 32(4), 257–260. https://doi.org/10.1088/0031-
8949/32/4/001
52. Marwan, N., Trauth, M. H., Vuille, M., & Kurths, J. (2003).
Comparing modern and Pleistocene ENSO-like influences in NW Argentina
using nonlinear time series analysis methods. Climate Dynamics, 21(3–4),
317–326. https://doi.org/10.1007/s00382-003-0335-3
53. Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., & Kurths, J.
(2002). Recurrence-plot-based measures of complexity and their application
to heart-rate-variability data. Physical Review E, 66(2), Article 026702.
https://doi.org/10.1103/physreve.66.026702
54. Moore, J. M., Corrêa, D. C., & Small, M. (2018). Is Bach’s brain a
Markov chain? Recurrence quantification to assess Markov order for short,
symbolic, musical compositions. Chaos: An Interdisciplinary Journal of
Nonlinear Science, 28(8), Article 085715. https://doi.org/10.1063/1.5024814
55. Nair, V., & Sujith, R. I. (2013). Identifying homoclinic orbits in the
dynamics of intermittent signals through recurrence quantification. Chaos:
An Interdisciplinary Journal of Nonlinear Science, 23(3), Article 033136.
https://doi.org/10.1063/1.4821475
56. Nichols, J., Trickey, S., & Seaver, M. (2006). Damage detection
using multivariate recurrence quantification analysis. Mechanical Systems
and Signal Processing, 20(2), 421–437. https://doi.org/10.1016/
j.ymssp.2004.08.007
57. Palmieri, F., & Fiore, U. (2009). A nonlinear, recurrence-based
approach to traffic classification. Computer Networks, 53(6), 761–773.
https://doi.org/10.1016/j.comnet.2008.12.015
58. Pham, T. D. (2016). Fuzzy recurrence plots. Europhysics Letters,
116(5), Article 50008. https://doi.org/10.1209/0295-5075/116/50008
59. Pham, T. D. (2019). Fuzzy weighted recurrence networks of time
series. Physica A: Statistical Mechanics and its Applications, 513, 409–417.
https://doi.org/10.1016/j.physa.2018.09.035
60. Pham, T. D. (2020). Fuzzy cross and fuzzy joint recurrence plots.
Physica A: Statistical Mechanics and its Applications, 540, Article 123026.
https://doi.org/10.1016/j.physa.2019.123026
61. Pham, T. D. (2020). Fuzzy recurrence entropy. Europhysics Letters,
130(4), Article 40004. https://doi.org/10.1209/0295-5075/130/40004
62. Pham, T. D. (2020). Fuzzy recurrence plots. In Fuzzy Recurrence
Plots and Networks with Applications in Biomedicine (pp. 29-55). Springer.
https://doi.org/10.1007/978-3-030-37530-0_4
63. Pham, T. D., Wardell, K., Eklund, A., & Salerud, G. (2019).
Classification of short time series in early Parkinsons disease with deep
learning of fuzzy recurrence plots. IEEE/CAA Journal of Automatica Sinica,
6(6), 1306–1317. https://doi.org/10.1109/jas.2019.1911774
64. Pincus, S. M. (1991). Approximate entropy as a measure of system
complexity. Proceedings of the National Academy of Sciences of the United
States of America, 88(6), 2297–2301. https://doi.org/10.1073/pnas.88.6.2297
65. Pincus, S. M., & Goldberger, A. L. (1994). Physiological time-series
analysis: what does regularity quantify? American Journal of Physiology-
Heart
and
Circulatory
Physiology,
266(4),
H1643–H1656.
https://doi.org/10.1152/ajpheart.1994.266.4.h1643
66. Pincus, S. M., & Huang, W. M. (1992). Approximate entropy:
Statistical properties and applications. Communications in Statistics –
Theory
and
Methods,
21(11),
3061–3077.
https://doi.org/10.1080/03610929208830963
67. Qian, Y., Yan, R., & Hu, S. (2014). Bearing Degradation Evaluation
Using Recurrence Quantification Analysis and Kalman Filter. IEEE
Transactions on Instrumentation and Measurement, 63(11), 2599–2610.
https://doi.org/10.1109/tim.2014.2313034
68. Rand, R., & Holmes, P. (1980). Bifurcation of periodic motions in
two weakly coupled van der Pol oscillators. International Journal of Non-
Linear Mechanics, 15(4–5), 387–399. https://doi.org/10.1016/0020-
7462(80)90024-4
69. Reinertsen, E., Osipov, M., Liu, C., Kane, J. M., Petrides, G., &
Clifford, G. D. (2017). Continuous assessment of schizophrenia using heart
rate and accelerometer data. Physiological Measurement, 38(7), 1456–1471.
https://doi.org/10.1088/1361-6579/aa724d
70. Richardson, D. C., & Dale, R. (2005). Looking to Understand: The
Coupling Between Speakers’ and Listeners’ Eye Movements and Its
Relationship to Discourse Comprehension. Cognitive Science, 29(6), 1045–
1060. https://doi.org/10.1207/s15516709cog0000_29
71. Richman, J. S., & Moorman, J. R. (2000). Physiological time-series
analysis using approximate entropy and sample entropy. American Journal
of Physiology-Heart and Circulatory Physiology, 278(6), H2039–H2049.
https://doi.org/10.1152/ajpheart.2000.278.6.h2039
72. Roncagliolo Barrera, P., Rodríguez Gómez, F., & García Ochoa, E.
(2019). Assessing of New Coatings for Iron Artifacts Conservation by
Recurrence
Plots
Analysis.
Coatings,
9(1),
Article
12.
https://doi.org/10.3390/coatings9010012
73. Rostaghi, M., & Azami, H. (2016). Dispersion Entropy: A Measure
for Time-Series Analysis. IEEE Signal Processing Letters, 23(5), 610–614.
https://doi.org/10.1109/lsp.2016.2542881
74. Ruelle, D. (1981). Small random perturbations of dynamical systems
and the definition of attractors. Communications in Mathematical Physics,
82(1), 137–151. https://doi.org/10.1007/bf01206949
75. Sanchez-Roger, M., Oliver-Alfonso, M. D., & Sanchís-Pedregosa, C.
(2019). Fuzzy Logic and Its Uses in Finance: A Systematic Review
Exploring Its Potential to Deal with Banking Crises. Mathematics, 7(11),
Article 1091. https://doi.org/10.3390/math7111091
76. Serrà, J., Serra, X., & Andrzejak, R. G. (2009). Cross recurrence
quantification for cover song identification. New Journal of Physics, 11,
Article 093017. https://doi.org/10.1088/1367-2630/11/9/093017
77. Shannon, C. E. (1948). A Mathematical Theory of Communication.
Bell System Technical Journal, 27(3), 379–423. https://doi.org/10.1002/
j.1538-7305.1948.tb01338.x
78. Shao, W., & Wang, J. (2020). Does the “ice-breaking” of South
and North Korea affect the South Korean financial market? Chaos,
Solitons & Fractals, 132, Article 109564. https://doi.org/10.1016/
j.chaos.2019.109564
79. Shaw, R. (1981). Strange Attractors, Chaotic Behavior, and
Information Flow. Zeitschrift Für Naturforschung A, 36(1), 80–112.
https://doi.org/10.1515/zna-1981-0115
80. Shi, B., Wang, L., Yan, C., Chen, D., Liu, M., & Li, P. (2019).
Nonlinear heart rate variability biomarkers for gastric cancer severity:
A pilot
study.
Scientific
Reports,
9(1),
Article
13833.
https://doi.org/10.1038/s41598-019-50358-y
81. Silva, D. F., De Souza, V. M., & Batista, G. E. (2013). Time series
classification using compression distance of recurrence plots. In Proceedings
of 2013 IEEE 13th International Conference on Data Mining (pp. 687-696).
IEEE. https://doi.org/10.1109/ICDM.2013.128
82. Soloviev, V., & Belinskiy, A. (2018). Complex systems theory and
crashes of cryptocurrency market. In V. Ermolayev, M. Suárez-Figueroa,
V. Yakovyna, H. Mayr, M. Nikitchenko, & A. Spivakovsky (Eds.),
Communications in Computer and Information Science: Vol. 1007.
Information and Communication Technologies in Education, Research, and
Industrial Applications (pp. 276-297). Springer. https://doi.org/10.1007/978-
3-030-13929-2_14
83. Soloviev, V., & Belinskij, A. (2018). Methods of nonlinear
dynamics and the construction of cryptocurrency crisis phenomena
precursors. CEUR Workshop Proceedings, 2104, 116-127. http://ceur-
ws.org/Vol-2104/paper_175.pdf
84. Soloviev, V., Bielinskyi, A., & Kharadzjan, N. (2020). Coverage of
the coronavirus pandemic through entropy measures. CEUR Workshop
Proceedings, 2832, 24-42. http://ceur-ws.org/Vol-2832/paper02.pdf
85. Soloviev, V., Bielinskyi, A., Serdyuk, O., Solovieva, V., &
Semerikov, S. (2020). Lyapunov exponents as indicators of the stock market
crashes. CEUR Workshop Proceedings, 2732, 455-470. http://ceur-
ws.org/Vol-2732/20200455.pdf
86. Soloviev, V., Bielinskyi, A., & Solovieva, V. (2019). Entropy
analysis of crisis phenomena for DJIA index. CEUR Workshop Proceedings,
2393, 434-449. http://ceur-ws.org/Vol-2393/paper_375.pdf
87. Soloviev, V., Serdiuk, O., Semerikov, S., & Kohut-Ferens, O.
(2019). Recurrence entropy and financial crashes. Advances in Economics,
Business
and
Management
Research,
99,
385-388.
https://dx.doi.org/10.2991/mdsmes-19.2019.73
88. Stangalini, M., Ermolli, I., Consolini, G., & Giorgi, F. (2017).
Recurrence quantification analysis of two solar cycle indices. Journal of
Space
Weather
and
Space
Climate,
7,
Article
A5.
https://doi.org/10.1051/swsc/2017004
89. Stender, M., Oberst, S., Tiedemann, M., & Hoffmann, N. (2019).
Complex machine dynamics: systematic recurrence quantification analysis of
disk brake vibration data. Nonlinear Dynamics, 97(4), 2483–2497.
https://doi.org/10.1007/s11071-019-05143-x
90. Strozzi, F., Zaldı́ Var, J. M., & Zbilut, J. P. (2002). Application of
nonlinear time series analysis techniques to high-frequency currency
exchange data. Physica A: Statistical Mechanics and its Applications, 312(3–
4), 520–538. https://doi.org/10.1016/s0378-4371(02)00846-4
91. Takens, F. (1981). Detecting strange attractors in turbulence. In
D. Rand, & L. Young (Eds.), Lecture Notes in Mathematics: Vol. 898.
Dynamical systems and turbulence, Warwick 1980 (pp. 366-381). Springer-
Verlag. https://doi.org/10.1007/BFb0091924
92. Voss, A., Schroeder, R., Vallverdu, M., Cygankiewicz, I., Vazquez, R.,
de Luna, A. B., & Caminal, P. (2008). Linear and nonlinear heart rate
variability risk stratification in heart failure patients. In Proceedings of the
2008 Computers in Cardiology (pp. 557-560). IEEE. https://doi.org/10.1109/
CIC.2008.4749102
93. Wang, G., & Wang, J. (2017). New approach of financial volatility
duration dynamics by stochastic finite-range interacting voter system.
Chaos: An Interdisciplinary Journal of Nonlinear Science, 27(1), Article
013117. https://doi.org/10.1063/1.4974216
94. Wang, Y., Zheng, S., Zhang, W., Wang, G., & Wang, J. (2018).
Fuzzy entropy complexity and multifractal behavior of statistical physics
financial dynamics. Physica A: Statistical Mechanics and its Applications,
506, 486–498. https://doi.org/10.1016/j.physa.2018.04.086
95. Webber, C. L., & Zbilut, J. P. (1994). Dynamical assessment of
physiological systems and states using recurrence plot strategies. Journal of
Applied Physiology, 76(2), 965–973. https://doi.org/10.1152/jappl.1994.76.2.965
96. Xie, H. B., He, W. X., & Liu, H. (2008). Measuring time series
regularity using nonlinear similarity-based sample entropy. Physics Letters
A, 372(48), 7140–7146. https://doi.org/10.1016/j.physleta.2008.10.049
97. Xie, H. B., Sivakumar, B., Boonstra, T. W., & Mengersen, K.
(2018). Fuzzy Entropy and Its Application for Enhanced Subspace Filtering.
IEEE
Transactions
on
Fuzzy
Systems,
26(4),
1970–1982.
https://doi.org/10.1109/tfuzz.2017.2756829
98. Yang, Y. G., Pan, Q. X., Sun, S. J., & Xu, P. (2015). Novel Image
Encryption based on Quantum Walks. Scientific Reports, 5(1), Article 7784.
https://doi.org/10.1038/srep07784
99. Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8(3), 338–
353. https://doi.org/10.1016/S0019-9958(65)90241-X
100. Zaitouny, A., Walker, D. M., & Small, M. (2019). Quadrant scan for
multi-scale transition detection. Chaos: An Interdisciplinary Journal of
Nonlinear
Science,
29(10),
Article
103117.
https://doi.org/10.1063/1.5109925
101. Zbilut, J. P., & Marwan, N. (2008). The Wiener–Khinchin theorem
and recurrence quantification. Physics Letters A, 372(44), 6622–6626.
https://doi.org/10.1016/j.physleta.2008.09.027
102. Zhang, Z., Xiang, Z., Chen, Y., & Xu, J. (2020). Fuzzy permutation
entropy derived from a novel distance between segments of time series.
AIMS Mathematics, 5(6), 6244–6260. https://doi.org/10.3934/math.2020402
103. Zhao, H., Deng, W., Yao, R., Sun, M., Luo, Y., & Dong, C. (2017).
Study on a novel fault diagnosis method based on integrating EMD, fuzzy
entropy, improved PSO and SVM. Journal of Vibroengineering, 19(4),
2562–2577. https://doi.org/10.21595/jve.2017.18052
104. Zhao, X., & Zhang, P. (2020). Multiscale horizontal visibility
entropy: Measuring the temporal complexity of financial time series. Physica
A: Statistical Mechanics and its Applications, 537, Article 122674.
https://doi.org/10.1016/j.physa.2019.122674
105. Zhao, Z. Q., Li, S. C., Gao, J. B., & Wang, Y. L. (2011). Identifying
Spatial Patterns and Dynamics of Climate Change Using Recurrence
Quantification Analysis: A Case Study of Qinghai–Tibet Plateau.
International Journal of Bifurcation and Chaos, 21(04), 1127-1139.
https://doi.org/10.1142/s0218127411028933
106. Zhou, C., & Zhang, W. (2015). Recurrence Plot Based Damage
Detection Method by Integrating T 2 Control Chart. Entropy, 17(5), 2624-
2641. https://doi.org/10.3390/e17052624
107. Zhou, Q., & Shang, P. (2020). Weighted multiscale cumulative
residual Rényi permutation entropy of financial time series. Physica A:
Statistical Mechanics and its Applications, 540, Article 123089.
https://doi.org/10.1016/j.physa.2019.123089
108. Zhou, R., Wang, X., Wan, J., & Xiong, N. (2021). EDM-Fuzzy: An
Euclidean Distance Based Multiscale Fuzzy Entropy Technology for Diagnosing Faults of Industrial Systems. IEEE Transactions on Industrial Informatics, 17(6), 4046–4054. https://doi.org/10.1109/tii.2020.3009139
109. Zolotova, N. V., & Ponyavin, D. I. (2006). Phase asynchrony of the north-south sunspot activity. Astronomy & Astrophysics, 449(1), L1–L4. https://doi.org/10.1051/0004-6361:200600013