Description:
[1] R. Albert, A.-L. Barabási, Statistical mechanics of complex networks, Rev. Mod. Phys. 74 (2002) 47–97. doi: 10.1103/RevModPhys.74.47 .
[2] C. Reuven, H. Shlomo, Complex Networks: Structure, Robustness and Function, Cambridge University Press, 2010.
[3] M. E. J. Newman, The structure and function of complex networks, SIAM Review 45 (2003) 167–256. doi: 10.1137/s003614450342480 .
[4] M. Newman, A.-L. Barabasi, D. J. Watts (Eds.), The Structure and Dynamics of Networks, Princeton University Press, Princeton, NJ, USA, 2006.
[5] G. Nicolis, I. Prigogine, Exploring complexity: an introduction, W.H. Freeman, 1989.
[6] A. Rai, A. Mahata, M. Nurujjaman, O. Prakash, Statistical properties of the aftershocks of stock market crashes: evidence based on the 1987 crash, 2008 financial crisis and COVID-19 pandemic, 2020. arXiv:2012.03012 .
[7] E. Mnif, A. Jarboui, K. Mouakhar, How the cryptocurrency market has performed during COVID 19? A multifractal analysis, Finance Research Letters 36 (2020) 101647. doi: 10.1016/j.frl.2020.101647 .
[8] A. Ammy-Driss, M. Garcin, Efficiency of the financial markets during the COVID-19 crisis: time-varying parameters of fractional stable dynamics, 2020. arXiv:2007.10727 .
[9] R. Cerqueti, V. Ficcadenti, Anxiety for the pandemic and trust in financial markets, 2020. arXiv:2008.01649 .
[10] M. Costola, M. Iacopini, C. R. M. A. Santagiustina, Public Concern and the Financial Markets during the COVID-19 outbreak, 2020. arXiv:2005.06796 .
[11] M. Feldkircher, F. Huber, M. Pfarrhofer, Measuring the Effectiveness of US Monetary Policy during the COVID-19 Recession, 2020. arXiv:2007.15419 .
[12] M. Garcin, J. Klein, S. Laaribi, Estimation of time-varying kernel densities and chronology of the impact of COVID-19 on financial markets, 2020. arXiv:2007.09043 .
[13] M. Pagano, C. Wagner, J. Zechner, Disaster resilience and asset prices, 2020. arXiv:2005.08929 .
[14] A. A. Toda, Susceptible-Infected-Recovered (SIR) Dynamics of COVID-19 and Economic Impact, 2020. arXiv:2003.11221 .
[15] S. Drożdż, J. Kwapień, P. Oświȩ, T. Stanisz, M. Wa̧ torek, Complexity in Economic and Social Systems: Cryptocurrency Market at around COVID-19, Entropy 22 (2020). doi: 10.3390/e22091043 .
[16] R. K.-K. Pang, O. Granados, H. Chhajer, E. F. Legara, An analysis of network filtering methods to sovereign bond yields during COVID-19, 2021. arXiv:2009.13390 .
[17] S. Semerikov, S. Chukharev, S. Sakhno, A. Striuk, V. Osadchyi, V. Solovieva, T. Vakaliuk, P. Nechypurenko, O. Bondarenko, H. Danylchuk, Our sustainable coronavirus future, E3S Web of Conferences 166 (2020). doi: 10.1051/e3sconf/202016600001 .
[18] H. Danylchuk, L. Kibalnyk, O. Kovtun, A. Kiv, O. Pursky, G. Berezhna, Modelling of cryptocurrency market using fractal and entropy analysis in COVID-19, CEUR Workshop Proceedings 2713 (2020) 352–371.
[19] A. Kaminskyi, M. Nehrey, N. Rizun, The impact of COVID-induced shock on the risk-return correspondence of agricultural ETFs, CEUR Workshop Proceedings 2713 (2020) 204–218.
[20] N. Maksyshko, O. Vasylieva, I. Kozin, V. Perepelitsa, Comparative analysis of the attractiveness of investment instruments based on the analysis of market dynamics, CEUR Workshop Proceedings 2713 (2020) 219–238.
[21] S. Semerikov, H. Kucherova, V. Los, D. Ocheretin, Neural network analytics and forecasting the country’s business climate in conditions of the coronavirus disease (COVID-19), CEUR Workshop Proceedings 2845 (2021) 22–32.
[22] G. Malinetsky, Synergetics – from past to future, Modeling and Analysis of Information Systems 19 (2015) 5–31. doi: 10.18255/1818-1015-2012-3-5-31 .
[23] V. Soloviev, N. Moiseienko, O. Tarasova, Modeling of cognitive process using complexity theory methods, CEUR Workshop Proceedings 2393 (2019) 905–918.
[24] S. Somin, Y. Altshuler, G. Gordon, A. Pentland, E. Shmueli, Network dynamics of a financial ecosystem, Scientific Reports 10 (2020) 4587. doi: 10.1038/s41598-020-61346-y .
[25] P. Grau, C. Jaureguizar, D. Jaureguizar, The cryptocurrency market: A network analysis, Esic Market Economics and Business Journal 49 (2018) 569–583. doi: 10.7200/esicm.161.0493.4i .
[26] J. Liang, L. Li, D. Zeng, Evolutionary dynamics of cryptocurrency transaction networks: An empirical study, PLOS ONE 13 (2018) 1–18. doi: 10.1371/journal.pone.0202202 .
[27] S. Thurner, P. Klimek, R. Hanel, Introduction to the theory of complex systems, Oxford University Press, Oxford, 2018. doi: 10.1093/oso/9780198821939.001.0001 .
[28] S. Drożdż, L. Minati, P. Oświȩcimka, M. Stanuszek, M. Wa̧ torek, Competition of noise and collectivity in global cryptocurrency trading: Route to a self-contained market, Chaos: An Interdisciplinary Journal of Nonlinear Science 30 (2020) 023122. doi: 10.1063/1.5139634 .
[29] M. Wa̧torek, S. Drożdż, J. Kwapień, L. Minati, P. Oświȩcimka, M. Stanuszek, Multiscale characteristics of the emerging global cryptocurrency market, Physics Reports 901 (2021) 1–82. doi: 10.1016/j.physrep.2020.10.005 .
[30] A. O. Bielinskyi, I. Khvostina, A. Mamanazarov, A. Matviychuk, S. Semerikov, O. Serdyuk, V. Solovieva, V. N. Soloviev, Predictors of oil shocks. Econophysical approach in environmental science, IOP Conference Series: Earth and Environmental Science 628 (2021) 012019. doi: 10.1088/1755- 1315/628/1/012019 .
[31] M. Ausloos, D. Grech, T. Di Matteo, R. Kutner, C. Schinckus, H. E. Stanley, Econophysics and sociophysics in turbulent world, Physica A: Statistical Mechanics and its Applications 531 (2020) 136–145.
[32] W. B. Arthur, Foundations of complexity economics, Nature Reviews Physics 3 (2021) 136–145. doi: 10.1038/s42254-020-00273-3 .
[33] R. Kutner, M. Ausloos, D. Grech, T. Di Matteo, C. Schinckus, H. Eugene Stanley, Econophysics and sociophysics: Their milestones & challenges, Physica A: Statistical Mechanics and its Applications 516 (2019) 240–253. doi: 10.1016/j.physa.2018.10.019 .
[34] R. Mantegna, H. Stanley, An Introduction to Econophysics: Correlations and Complexity in Finance, volume 53, 2000. doi: 10.1063/1.1341926 .
[35] A. Bielinskyi, O. Serdyuk, S. Semerikov, V. Soloviev, Econophysics of cryptocurrency crashes: an overview, SHS Web of Conferences 107 (2021) 03001. doi: 10.1051/shsconf/202110703001 .
[36] Z.-Q. Jiang, W.-J. Xie, W.-X. Zhou, D. Sornette, Multifractal analysis of financial markets: a review, Reports on Progress in Physics 82 (2019) 125901. doi: 10.1088/1361-6633/ab42fb .
[37] J. Kwapień, S. Drożdż, Physical approach to complex systems, Physics Reports 515 (2012) 115–226. doi: 10.1016/j.physrep.2012.01.007 , physical approach to complex systems.
[38] B. E. Baaquie, Quantum Finance: Path Integrals and Hamiltonians for Options and Interest Rates, Cambridge University Press, 2004.
[39] M. Schaden, Quantum finance, Physica A: Statistical Mechanics and its Applications 316 (2002) 511–538. doi: 10.1016/s0378- 4371(02)01200- 1 .
[40] V. P. Maslov, V. E. Nazaikinskii, Mathematics underlying the 2008 financial crisis, and a possible remedy, 2009. arXiv:0811.4678 .
[41] C. Schinckus, A methodological call for a quantum econophysics, in: Selected Papers of the 7th International Conference on Quantum Interaction - Volume 8369, QI 2013, Springer-Verlag, Berlin, Heidelberg, 2013, p. 308–316. doi: 10.1007/978-3-642-54943-4_28 .
[42] V. Saptsin, V. Soloviev, Relativistic quantum econophysics - new paradigms in complex systems modelling, 2009. arXiv:0907.1142 .
[43] V. Soloviev, V. Saptsin, Heisenberg uncertainty principle and economic analogues of basic physical quantities, 2011. arXiv:1111.5289 .
[44] D. Sornette, Why Stock Markets Crash: Critical Events in Complex Financial Systems, Princeton University Press, 2003. doi: doi:10.1515/9781400885091 .
[45] Y. Peng, P. Albuquerque, J. Camboim de Sá, A. J. Padula, M. Montenegro, The best of two worlds: Forecasting High Frequency Volatility for cryptocurrencies and traditional currencies with Support Vector Regression, Expert Systems with Applications 97 (2017). doi: 10.1016/j.eswa.2017.12.004 .
[46] Q. Zhao, A deep learning framework for predicting digital asset price movement from trade-by-trade data, 2020. arXiv:2010.07404 .
[47] M. Amjad, D. Shah, Trading bitcoin and online time series prediction, in: O. Anava, A. Khaleghi, M. Cuturi, V. Kuznetsov, A. Rakhlin (Eds.), Proceedings of the Time Series Workshop at NIPS 2016, volume 55 of Proceedings of Machine Learning Research, PMLR, Barcelona, Spain, 2017, pp. 1–15.
[48] T. Chen, C. Guestrin, XGBoost: A scalable Tree Boosting System, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016). doi: 10.1145/2939672.2939785 .
[49] V. Derbentsev, A. Matviychuk, V. Soloviev, Forecasting of cryptocurrency prices using machine learning, in: L. Pichl, C. Eom, T. Kaizoji (Eds.), Advanced Studies of Financial Technologies and Cryptocurrency Markets, 1 ed., Springer, 2020, pp. 211–231. doi: 10.1007/978-981-15-4498-9_12 .
[50] A. H. Dyhrberg, Bitcoin, gold and the dollar – a GARCH volatility analysis, Finance Research Letters 16 (2016) 85–92.
[51] M. Ortu, N. Uras, C. Conversano, G. Destefanis, S. Bartolucci, On technical trading and social media indicators in cryptocurrencies’ price classification through deep learning, 2021. arXiv:2102.08189 .
[52] N. Uras, L. Marchesi, M. Marchesi, R. Tonelli, Forecasting Bitcoin closing price series using linear regression and neural networks models, 2020. arXiv:2001.01127 .
[53] A. Hachicha, F. Hachicha, Analysis of the bitcoin stock market indexes using comparative study of two models SV with MCMC algorithm, Review of Quantitative Finance and Accounting 56 (2021) 647–673. doi: 10.1007/s11156-020-00905-w .
[54] J. Kaminski, Nowcasting the Bitcoin Market with Twitter Signals, 2016. arXiv:1406.7577 .
[55] M. A. Kennis, Multi-channel discourse as an indicator for Bitcoin price and volume movements, 2018. arXiv:1811.03146 .
[56] O. Kodama, L. Pichl, T. Kaizoji, Regime Change And Trend Prediction For Bitcoin Time Series Data, CBU International Conference Proceedings 5 (2017) 384–388. URL: https://ideas.repec.org/a/aad/iseicj/v5y2017i0p384-388.html. doi: 10.12955/cbup.v5.954 .
[57] D. Shah, K. Zhang, Bayesian regression and Bitcoin, 2014. arXiv:1410.1231 .
[58] V. Soloviev, S. V., Quantitative methods of estimation of complication are in prognostica- tion of the socio-economic systems, in: Modern problems of forecasting socio-economic processes: concepts, models, applied aspects, Tkachuk O. V., 2012, pp. 174–188.
[59] M. Tarnopolski, Modeling the price of Bitcoin with geometric fractional Brownian motion: a Monte Carlo approach, 2017. arXiv:1707.03746 .
[60] N. T. Courtois, M. Grajek, R. Naik, Optimizing sha256 in bitcoin mining, in: Z. Kotulski, B. Księżopolski, K. Mazur (Eds.), Cryptography and Security Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, 2014, pp. 131–144. doi: 10.1007/978-3-662-44893-9_12 .
[61] L. Kristoufek, Grandpa, Grandpa, Tell Me the One About Bitcoin Being a Safe Haven: New Evidence From the COVID-19 Pandemic, Frontiers in Physics 8 (2020). doi: 10.3389/fphy.2020.00296 .
[62] D. Broomhead, G. P. King, Extracting qualitative dynamics from experimental data, Physica D: Nonlinear Phenomena 20 (1986) 217–236. doi: 10.1016/0167-2789(86)90031-X .
[63] V. I. Ponomarenko, M. D. Prokhorov, Extracting information masked by the chaotic signal of a time-delay system, Phys. Rev. E 66 (2002) 026215. doi: 10.1103/PhysRevE.66.026215 .
[64] M. Rajković, Extracting meaningful information from financial data, Physica A: Statistical Mechanics and its Applications 287 (2000) 383–395. doi: 10.1016/S0378-4371(00)00377-0 .
[65] G. M. Caporale, L. A. Gil-Alana, A. Plastun, Persistence in the Cryptocurrency Market, CESifo Working Paper Series 6811, CESifo, 2017. URL: https://ideas.repec.org/p/ces/ceswps/_6811.html.
[66] A. F. Bariviera, M. J. Basgall, W. Hasperué, M. Naiouf, Some stylized facts of the Bitcoin market, Physica A: Statistical Mechanics and its Applications 484 (2017) 82–90. doi: 10.1016/j.physa.2017.04.159 .
[67] A. F. Bariviera, The inefficiency of Bitcoin revisited: A dynamic approach, Economics Letters 161 (2017) 1–4. doi: 10.1016/j.econlet.2017.09.013 .
[68] J. Wang, G. Meric, Z. Liu, I. Meric, Stock market crashes, firm characteristics, and stock returns, Journal of Banking & Finance 33 (2009) 1563–1574. doi: 10.1016/j.jbankfin.2009.03.002 .
[69] S. Lleo, W. T. Ziemba, Does the bond-stock earnings yield differential model predict equity market corrections better than high P/E models?, Financial Markets, Institutions & Instruments 26 (2017) 61–123. doi: 10.1111/fmii.12080 .
[70] H. Hong, J. Stein, Differences of opinion, short-sales constraints, and market crashes, Review of Financial Studies 16 (2003) 487–525.
[71] M. Shu, W. Zhu, Real-time prediction of Bitcoin bubble crashes, Physica A: Statistical Mechanics and its Applications 548 (2020) 124477. doi: 10.1016/j.physa.2020.124477 .
[72] T. Klein, H. Pham Thu, T. Walther, Bitcoin is not the New Gold – A comparison of volatility, correlation, and portfolio performance, International Review of Financial Analysis 59 (2018) 105–116. doi: 10.1016/j.irfa.2018.07.010 .
[73] K. Gkillas, F. Longin, Is Bitcoin the New Digital Gold? Evidence From Extreme Price Movements in Financial Markets, SSRN Electronic Journal (2019) 1–85. doi: 10.2139/ssrn.3245571 .
[74] Y. Liu, A. Tsyvinski, X. Wu, Common Risk Factors in Cryptocurrency, NBER Working Papers 25882, National Bureau of Economic Research, Inc, 2019.
[75] L. Kristoufek, What Are the Main Drivers of the Bitcoin Price? Evidence from Wavelet Coherence Analysis, PLOS ONE 10 (2015) 1–15. doi: 10.1371/journal.pone.0123923 .
[76] X. Li, C. Wang, The technology and economic determinants of cryptocurrency exchange rates: The case of Bitcoin, Decision Support Systems 95 (2017) 49–60. doi: 10.1016/j.dss.2016.12.001 .
[77] A. Bielinskyi, V. Soloviev, S. Semerikov, V. Solovieva, Detecting stock crashes using Levy distribution, CEUR Workshop Proceedings 2422 (2019) 420–433.
[78] A. Bielinskyi, S. Semerikov, V. Solovieva, V. Soloviev, Levy ́s stable distribution for stock crash detecting, SHS Web Conf. 65 (2019) 06006. doi: 10.1051/shsconf/20196506006 .
[79] V. Derbentsev, S. Semerikov, O. Serdyuk, V. Solovieva, V. Soloviev, Recurrence based entropies for sustainability indices, E3S Web of Conferences 166 (2020) 13031. doi: 10.1051/e3sconf/202016613031 .
[80] V. N. Soloviev, A. Belinskiy, Complex systems theory and crashes of cryptocurrency market, in: V. Ermolayev, M. C. Suárez-Figueroa, V. Yakovyna, H. C. Mayr, M. Nikitchenko, A. Spivakovsky (Eds.), Information and Communication Technologies in Education, Research, and Industrial Applications, Springer International Publishing, Cham, 2019, pp. 276–297. doi: 10.1007/978-3-030-13929-2_14 .
[81] V. Soloviev, A. Belinskiy, Methods of nonlinear dynamics and the construction of cryptocurrency crisis phenomena precursors, CEUR Workshop Proceedings 2104 (2018) 116–127.
[82] V. Soloviev, A. Bielinskyi, O. Serdyuk, V. Solovieva, S. Semerikov, Lyapunov exponents as indicators of the stock market crashes, CEUR Workshop Proceedings 2732 (2020) 455–470.
[83] V. Soloviev, S. Yevtushenko, V. Batareyev, Entropy analysis of crisis phenomena for DJIA index, CEUR Workshop Proceedings 2393 (2019) 434–449.
[84] V. Soloviev, V. Solovieva, A. Tuliakova, M. Ivanova, Construction of crisis precursors in multiplex networks, in: Proceedings of the 2019 7th International Conference on Modeling, Development and Strategic Management of Economic System (MDSMES 2019), Atlantis Press, 2019/10, pp. 361–366. doi: 10.2991/mdsmes- 19.2019.68 .
[85] V. Soloviev, O. Serdiuk, S. Semerikov, O. Kohut-Ferens, Recurrence entropy and financial crashes, in: Proceedings of the 2019 7th International Conference on Modeling, Development and Strategic Management of Economic System (MDSMES 2019), Atlantis Press, 2019/10, pp. 385–388. doi: 10.2991/mdsmes- 19.2019.73 .
[86] V. Soloviev, A. Bielinskyi, N. Kharadzjan, Coverage of the coronavirus pandemic through entropy measures, CEUR Workshop Proceedings 2832 (2020) 24–42.
[87] M. S. Kanwal, J. A. Grochow, N. Ay, Comparing Information-Theoretic Measures of Complexity in Boltzmann Machines, Entropy 19 (2017). URL: https://www.mdpi.com/1099-4300/19/7/310. doi: 10.3390/e19070310 .
[88] D. Bonchev, Information theoretic complexity measures, in: R. A. Meyers (Ed.), Encyclopedia of Complexity and Systems Science, Springer, 2009, pp. 4820–4838. doi: 10.1007/978-0-387-30440-3_285 .
[89] L. Lovász, Information and complexity (how to measure them?), The Emergence of Complexity in Mathematics, Physics, Chemistry and Biology, Pontifical Academy of Sciences (1996) 12.
[90] L. T. Lui, G. Terrazas, H. Zenil, C. Alexander, N. Krasnogor, Complexity Measurement Based on Information Theory and Kolmogorov Complexity, Artificial Life 21 (2015) 205–224. doi: 10.1162/ARTL_a_00157 .
[91] C. E. Shannon, A mathematical theory of communication, Bell System Technical Journal 27 (1948) 379–423. doi: 10.1002/j.1538- 7305.1948.tb01338.x .
[92] G. Sommazzi, Kolmogorov Randomness, Complexity and the Laws of Nature, Bachelor in philosophy thesis, Università degli studi di Milano, 2016. URL: https://core.ac.uk/download/pdf/186331492.pdf.
[93] J.-L. Blanc, L. Pezard, A. Lesne, Delay independence of mutual-information rate of two symbolic sequences, Phys. Rev. E 84 (2011) 036214. doi: 10.1103/PhysRevE.84.036214 .
[94] S. Zozor, P. Ravier, O. Buttelli, On Lempel–Ziv complexity for multidimensional data analysis, Physica A: Statistical Mechanics and its Applications 345 (2005) 285–302. doi: 10.1016/j.physa.2004.07.025 .
[95] E. Estevez-Rams, R. Lora Serrano, B. Aragón Fernández, I. Brito Reyes, On the non-randomness of maximum Lempel Ziv complexity sequences of finite size, Chaos: An Interdisciplinary Journal of Nonlinear Science 23 (2013) 023118. doi: 10.1063/1.4808251 .
[96] S. D. Silva, R. Matsushita, R. Giglio, The relative efficiency of stockmarkets, Economics Bulletin 7 (2008) 1–12.
[97] R. Giglio, R. Matsushita, A. Figueiredo, I. Gleria, S. D. Silva, Algorithmic complexity theory and the relative efficiency of financial markets, EPL (Europhysics Letters) 84 (2008) 48005. doi: 10.1209/0295-5075/84/48005 .
[98] S. Da Silva, Financial Market Efficiency Should be Gauged in Relative Rather than Absolute Terms, MPRA Paper 64497, University Library of Munich, Germany, 2015.
[99] S. Da Silva, C. Taufemback, R. Giglio, Algorithmic complexity theory detects decreases in the relative efficiency of stock markets in the aftermath of the 2008 financial crisis, Economics Bulletin 31 (2011) 1631–1647.
[100] R. Giglio, S. Da Silva, Ranking the stocks listed on Bovespa according to their relative efficiency, MPRA Paper 22720, University Library of Munich, Germany, 2009.
[101] A. Lempel, J. Ziv, On the complexity of finite sequences, IEEE Transactions on Information Theory 22 (1976) 75–81. doi: 10.1109/TIT.1976.1055501 .
[102] O. Brandouy, J.-P. Delahaye, L. Ma, H. Zenil, Algorithmic complexity of financial motions, Research in International Business and Finance 30 (2014) 336–347. doi: 10.1016/j.ribaf.2012.08.001 .
[103] P. Fiedor, Multiscale analysis of the predictability of stock returns, Risks 3 (2015) 219–233. doi: 10.3390/risks3020219 .
[104] J. Gao, Y. Hou, F. Fan, F. Liu, Complexity Changes in the US and China’s Stock Markets: Differences, Causes, and Wider Social Implications, Entropy 22 (2020). URL: https://www.mdpi.com/1099-4300/22/1/75. doi: 10.3390/e22010075 .
[105] H. Cao, Y. Li, Unraveling chaotic attractors by complex networks and measurements of stock market complexity, Chaos: An Interdisciplinary Journal of Nonlinear Science 24 (2014) 013134. doi: 10.1063/1.4868258 .
[106] V. Soloviev, S. Semerikov, V. Solovieva, Lempel-Ziv Complexity and Crises of Cryptocurrency Market, in: Proceedings of the III International Scientific Congress Society of Ambient Intelligence 2020 (ISC-SAI 2020), Atlantis Press, 2020, pp. 299–306. doi: 10.2991/aebmr.k.200318.037 .
[107] A. N. Kolmogorov, Three approaches to the quantitative definition of information, International Journal of Computer Mathematics 2 (1968) 157–168. doi: 10.1080/00207166808803030 .
[108] M. Costa, C.-K. Peng, A. Goldberger, Multiscale analysis of heart rate dynamics: Entropy and time irreversibility measures, Cardiovascular engineering (Dordrecht, Netherlands) 8 (2008) 88–93. doi: 10.1007/s10558- 007- 9049- 1 .
[109] R. Clausius, T. Hirst, The Mechanical Theory of Heat: With Its Applications to the Steam-Engine and to the Physical Properties of Bodies, Creative Media Partners, LLC, 2017.
[110] L. Boltzmann, Weitere Studien über das Wärmegleichgewicht unter Gasmolekülen, volume 67, Vieweg+Teubner Verlag, 1970, pp. 115–225. doi: 10.1007/978-3-322-84986-1_3 .
[111] J. W. Gibbs, Elementary principles in statistical mechanics developed with especial reference to the rational foundation of thermodynamics, C. Scribner, New York, 1902.
[112] M. Vosvrda, J. Barunik, L. Vacha, M. Vošvrda, Tail Behavior of the Central European Stock Markets during the Financial Crisis, Czech Economic Review 4 (2010) 281–294.
[113] J. S. Richman, J. R. Moorman, Physiological time-series analysis using approximate entropy and sample entropy, American Journal of Physiology-Heart and Circulatory Physiology 278 (2000) H2039–H2049. doi: 10.1152/ajpheart.2000.278.6.H2039 .
[114] R. Sole, S. Valverde, Information Theory of Complex Networks: On Evolution and Architectural Constraints, volume 207, Springer, 2004, pp. 189–207. doi: 10.1007/978-3-540-44485-5_9 .
[115] V. Soloviev, O. Serdiuk, The usage of Tsallis entropy for complexity evaluation in economic systems, in: Information technologies and modeling in economics: on the way to interdisciplinarity, Gate-Ukraine, 2013, pp. 115–129.
[116] C. Tsallis, Introduction to nonextensive statistical mechanics: Approaching a complex world, Springer, 2009. doi: 10.1007/978- 0- 387- 85359- 8 .
[117] A. Delgado-Bonal, A. Marshak, Approximate entropy and sample entropy: A comprehensive tutorial, Entropy 21 (2019). doi: 10.3390/e21060541 .
[118] S. M. Pincus, Approximate entropy as a measure of system complexity, Proceedings of the National Academy of Sciences of the United States of America 88 (1991) 2297—2301.
[119] S. M. Pincus, A. L. Goldberger, Physiological time-series analysis: what does regularity quantify?, American Journal of Physiology-Heart and Circulatory Physiology 266 (1994) H1643–H1656. doi: 10.1152/ajpheart.1994.266.4.H1643 .
[120] K. Yun, H.-K. Park, D.-H. Kwon, Y.-T. Kim, S.-N. Cho, H.-J. Cho, B. S. Peterson, J. Jeong, Decreased cortical complexity in methamphetamine abusers, Psychiatry Research: Neuroimaging 201 (2012) 226–232.
[121] S. N. Bhaduri, Applying Approximate Entropy (ApEn) to Speculative Bubble in the Stock Market, Journal of Emerging Market Finance 13 (2014) 43–68. doi: 10.1177/0972652714534023 .
[122] C. Eom, G. Oh, W.-S. Jung, Relationship between efficiency and predictability in stock price change, Physica A: Statistical Mechanics and its Applications 387 (2008) 5511–5517. URL: https://ideas.repec.org/a/eee/phsmap/v387y2008i22p5511-5517.html. doi: 10.1016/j.physa.2008.05.0 .
[123] S. Lahmiri, S. Bekiros, The impact of COVID-19 pandemic upon stability and sequential irregularity of equity and cryptocurrency markets, Chaos, Solitons & Fractals 138 (2020) 109936. doi: 10.1016/j.chaos.2020.109936 .
[124] I. Mahmoud, K. Naoui, H. Jemmali, Study of speculative bubbles: The contribution of approximate entropy, International Journal of Economics and Financial Issues 3 (2013) 683–693.
[125] S. Pincus, R. E. Kalman, Irregularity, volatility, risk, and financial market time series, Proceedings of the National Academy of Sciences 101 (2004) 13709–13714.
[126] W.-Q. Duan, H. E. Stanley, Volatility, irregularity, and predictable degree of accumulative return series, Phys. Rev. E 81 (2010) 066116. doi: 10.1103/PhysRevE.81.066116 .
[127] A. Delgado-Bonal, Quantifying the randomness of the stock markets, Sci. Rep. 9 (2019) 2045–2322. doi: 10.1038/s41598-019-49320-9 .
[128] C. Bandt, B. Pompe, Permutation entropy: A natural complexity measure for time series, Phys. Rev. Lett. 88 (2002) 174102. URL: https://link.aps.org/doi/10.1103/PhysRevLett.88.174102. doi: 10.1103/PhysRevLett.88.174102 .
[129] J. Amigó, Permutation Complexity in Dynamical Systems, Springer-Verlag Berlin Heidelberg, 2010.
[130] M. Zanin, L. Zunino, O. A. Rosso, D. Papo, Permutation entropy and its main biomedical and econophysics applications: A review, Entropy 14 (2012) 1553–1577.
[131] H. Kantz, T. Schreiber, Nonlinear Time Series Analysis, 2 ed., Cambridge University Press, 2003. doi: 10.1017/CBO9780511755798 .
[132] M. Henry, G. Judge, Permutation entropy and information recovery in nonlinear dynamic economic time series, Econometrics 7 (2019). doi: 10.3390/econometrics7010010 .
[133] H. Sigaki, M. Perc, H. Ribeiro, Clustering patterns in efficiency and the coming-of-age of the cryptocurrency market, Scientific Reports 9 (2019). doi: 10.1038/s41598-018-37773-3 .
[134] A. Sensoy, The inefficiency of Bitcoin revisited: A high-frequency analysis with alternative currencies, Finance Research Letters 28 (2019) 68–73. doi: 10.1016/j.frl.2018.04.002 .
[135] A. Metin Karakaş, Entropy Approach for Volatility of Ethereum and Bitcoin, Asian Journal of Business and Management 7 (2019) 10–15. doi: 10.24203/ajbm.v7i1.5682 .
[136] D. T. Pele, M. Mazurencu-Marinescu-Pele, Using high-frequency entropy to forecast bitcoin’s daily value at risk, Entropy 21 (2019). doi: 10.3390/e21020102 .
[137] F. Takens, Detecting Strange Attractors in Turbulence, in: D. Rand, L.-S. Young (Eds.), Dynamical Systems and Turbulence, Warwick 1980, volume 898 of Lecture Notes in Mathematics, Springer, Berlin, 1981, pp. 366–381. doi: 10.1007/bfb0091924 .
[138] J. P. Eckmann, D. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Mod. Phys. 57 (1985) 617–656. doi: 10.1103/RevModPhys.57.617 .
[139] E. Ott, T. Sauer, J. Yorke, Coping with Chaos, Wiley Series in Nonlinear Science, Wiley, 1994.
[140] C. L. Webber, Jr., J. P. Zbilut, Recurrence quantification analysis of nonlinear dynamical systems, in: M. A. Riley, G. C. V. Orden (Eds.), Tutorials in Contemporary Nonlinear Methods for the Behavioral Sciences, National Science Foundation (NSF), 2005, pp. 26–94.
[141] R. Gu, Multiscale shannon entropy and its application in the stock market, Physica A: Statistical Mechanics and its Applications 484 (2017) 215–224. doi: 10.1016/j.physa.2017.04.164 .
[142] B. B. Mandelbrot, J. A. Wheeler, The fractal geometry of nature, American Journal of Physics 51 (1983) 286–287. doi: 10.1119/1.13295 .
[143] H. E. Hurst, Long-term storage capacity of reservoirs, Transactions of the American Society of Civil Engineers 116 (1951) 770–799. doi: 10.1061/TACEAT.0006518 .
[144] H. E. Hurst, A suggested statistical model of some time series which occur in nature, Nature 180 (1957) 494. doi: 10.1038/180494a0 .
[145] A. W. Lo, Long-term Memory in Stock Market Prices, Working Paper 2984, National Bureau of Economic Research, 1989. doi: 10.3386/w2984 .
[146] C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, A. L. Goldberger, Mosaic organization of DNA nucleotides, Phys. Rev. E 49 (1994) 1685–1689.
[147] Z.-Q. Jiang, W.-J. Xie, W.-X. Zhou, Testing the weak-form efficiency of the WTI crude oil futures market, Physica A: Statistical Mechanics and its Applications 405 (2014) 235–244. doi: 10.1016/j.physa.2014.02.042 .
[148] J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde, H. Stanley, Multifractal detrended fluctuation analysis of nonstationary time series, Physica A: Statistical Mechanics and its Applications 316 (2002) 87–114. doi: 10.1016/s0378-4371(02)01383-3 .
[149] F. Aslam, W. Mohti, P. Ferreira, Evidence of intraday multifractality in european stock markets during the recent coronavirus (COVID-19) outbreak, International Journal of Financial Studies 8 (2020). URL: https://www.mdpi.com/2227-7072/8/2/31. doi: 10.3390/ijfs8020031 .
[150] R. Hasan, S. M. Mohammad, Multifractal analysis of Asian markets during 2007–2008 financial crisis, Physica A: Statistical Mechanics and its Applications 419 (2015) 746–761. doi: 10.1016/j.physa.2014.10.030 .
[151] S. Kumar, N. Deo, Multifractal properties of the Indian financial market, Physica A: Statistical Mechanics and its Applications 388 (2009) 1593–1602. doi: 10.1016/j.physa.2008.12.0 .
[152] J. Kwapień, P. Oświȩcimka, S. Drożdż, Components of multifractality in high-frequency stock returns, Physica A: Statistical Mechanics and its Applications 350 (2005) 466–474.
[153] S. Lahmiri, Multifractal analysis of Moroccan family business stock returns, Physica A: Statistical Mechanics and its Applications 486 (2017) 183–191. doi: 10.1016/j.physa.1182017.05.048 .
[154] J. W. Lee, K. Eun Lee, P. Arne Rikvold, Multifractal behavior of the Korean stock-market index KOSPI, Physica A: Statistical Mechanics and its Applications 364 (2006) 355–361. doi: 10.1016/j.physa.2005.08.082 .
[155] K. Matia, Y. Ashkenazy, H. E. Stanley, Multifractal properties of price fluctuations of stocks and commodities, Europhysics Letters (EPL) 61 (2003) 422–428. doi: 10.1209/epl/i2003- 00194- y .
[156] P. Suárez-García, D. Gómez-Ullate, Multifractality and long memory of a financial index, Physica A: Statistical Mechanics and its Applications 394 (2014) 226–234. doi: 10.1016/j.physa.2013.09.038 .
[157] L. Zunino, A. Figliola, B. M. Tabak, D. G. Pérez, M. Garavaglia, O. A. Rosso, Multifractal structure in Latin-American market indices, Chaos, Solitons & Fractals 41 (2009) 2331–2340. doi: 10.1016/j.chaos.2008.09.013 .
[158] F. Delbianco, F. Tohmé, T. Stosic, B. Stosic, Multifractal behavior of commodity markets: Fuel versus non-fuel products, Physica A: Statistical Mechanics and its Applications 457 (2016) 573–580. doi: 10.1016/j.physa.2016.03.096 .
[159] R. Gu, H. Chen, Y. Wang, Multifractal analysis on international crude oil markets based on the multifractal detrended fluctuation analysis, Physica A: Statistical Mechanics and its Applications 389 (2010) 2805–2815. URL: https://EconPapers.repec.org/RePEc:eee:phsmap:v:389:y:2010:i:14:p:2805-2815.
[160] Z. Li, X. Lu, Multifractal analysis of China’s agricultural commodity futures markets, Energy Procedia 5 (2011) 1920–1926. doi: 10.1016/j.egypro.2011.03.330 , 2010 International Conference on Energy, Environment and Development - ICEED2010.
[161] P. Mali, A. Mukhopadhyay, Multifractal characterization of gold market: A multifractal detrended fluctuation analysis, Physica A: Statistical Mechanics and its Applications 413 (2014) 361–372. doi: 10.1016/j.physa.2014.06.076 .
[162] S. Zheng, X. Lan, Multifractal analysis of spot rates in tanker markets and their comparisons with crude oil markets, Physica A: Statistical Mechanics and its Applications 444 (2016) 547–559.
[163] G. Lim, S. Kim, H. Lee, K. Kim, D.-I. Lee, Multifractal detrended fluctuation analysis of derivative and spot markets, Physica A: Statistical Mechanics and its Applications 386 (2007) 259–266. doi: 10.1016/j.physa.2007.07.055 .
[164] P. Caraiani, E. Haven, Evidence of multifractality from CEE exchange rates against euro, Physica A Statistical Mechanics and its Applications 419 (2015) 395–407. doi: 10.1016/j.physa.2014.06.043 .
[165] P. Norouzzadeh, B. Rahmani, A multifractal detrended fluctuation description of Iranian rial–US dollar exchange rate, Physica A: Statistical Mechanics and its Applications 367 (2006) 328–336. doi: 10.1016/j.physa.2005.11.019 .
[166] G. Oh, C. Eom, S. Havlin, W.-S. Jung, F. Wang, H. Stanley, S. Kim, A multifractal analysis of Asian foreign exchange markets, Eur. Phys. J. B 85 (2012) 214. doi: 10.1140/epjb/e2012-20570-0 .
[167] J. Qin, X. Lu, Y. Zhou, L. Qu, The effectiveness of China’s RMB exchange rate reforms: An insight from multifractal detrended fluctuation analysis, Physica A: Statistical Mechanics and its Applications 421 (2015) 443–454. doi: 10.1016/j.physa.2014.11.053 .
[168] D.-H. Wang, X.-W. Yu, Y.-Y. Suo, Statistical properties of the yuan exchange rate index, Physica A: Statistical Mechanics and its Applications 391 (2012) 3503–3512. doi: 10.1016/j.physa.2012.01.054 .
[169] P. Norouzzadeh, W. Dullaert, B. Rahmani, Anti-correlation and multifractal features of Spain electricity spot market, Physica A: Statistical Mechanics and its Applications 380 (2007) 333–342. doi: 10.1016/j.physa.2007.02.087 .
[170] W. Mensi, A. K. Tiwari, S.-M. Yoon, Global financial crisis and weak-form efficiency of Islamic sectoral stock markets: An MF-DFA analysis, Physica A: Statistical Mechanics and its Applications 471 (2017) 135–146. doi: 10.1016/j.physa.2016.12.0 .
[171] A. K. Tiwari, C. T. Albulescu, S.-M. Yoon, A multifractal detrended fluctuation analysis of financial market efficiency: Comparison using Dow Jones sector ETF indices, Physica A: Statistical Mechanics and its Applications 483 (2017) 182–192. doi: 10.1016/j.physa.2017.05.007 .
[172] Y. Wang, Y. Wei, C. Wu, Analysis of the efficiency and multifractality of gold markets based on multifractal detrended fluctuation analysis, Physica A: Statistical Mechanics and its Applications 390 (2011) 817–827. doi: 10.1016/j.physa.2010.11.002 .
[173] L. Zunino, B. Tabak, A. Figliola, D. Pérez, M. Garavaglia, O. Rosso, A multifractal approach for stock market inefficiency, Physica A: Statistical Mechanics and its Applications 387 (2008) 6558–6566. doi: 10.1016/j.physa.2008.08.028 .
[174] B. Podobnik, H. E. Stanley, Detrended cross-correlation analysis: A new method for analyzing two nonstationary time series, Phys. Rev. Lett. 100 (2008) 084102. doi: 10.1103/PhysRevLett.100.084102 .
[175] W.-X. Zhou, Multifractal detrended cross-correlation analysis for two nonstationary signals, Physical Review E 77 (2008).
[176] N. Costa, C. Silva, P. Ferreira, Long-Range Behaviour and Correlation in DFA and DCCA Analysis of Cryptocurrencies, International Journal of Financial Studies 7 (2019). doi: 10.3390/ijfs7030051 .
[177] X.-Y. Qian, Y.-M. Liu, Z.-Q. Jiang, B. Podobnik, W.-X. Zhou, H. E. Stanley, Detrended partial cross-correlation analysis of two nonstationary time series influenced by common external forces, Phys. Rev. E 91 (2015) 062816. doi: 10.1103/PhysRevE.91.062816 .
[178] Z.-Q. Jiang, W.-X. Zhou, Multifractal detrending moving-average cross-correlation analysis, Phys. Rev. E 84 (2011) 016106. doi: 10.1103/PhysRevE.84.016106 .
[179] L. Kristoufek, Multifractal height cross-correlation analysis: A new method for analyzing long-range cross-correlations, EPL (Europhysics Letters) 95 (2011) 68001. doi: 10.1209/0295-5075/95/68001 .
[180] J. Wang, P. Shang, W. Ge, Multifractal cross-correlation analysis based on statistical moments, Fractals 20 (2012) 271–279. doi: 10.1142/S0218348X12500259 .
[181] J. Li, X. Lu, Y. Zhou, Cross-correlations between crude oil and exchange markets for selected oil rich economies, Physica A: Statistical Mechanics and its Applications 453 (2016) 131–143. URL: https://EconPapers.repec.org/RePEc:eee:phsmap:v:453:y:2016:i:c:p:131-143.
[182] C. Xie, Y. Zhou, G. Wang, X. Yan, Analyzing the Cross-Correlation Between Onshore and Offshore RMB Exchange Rates Based on Multifractal Detrended Cross-Correlation Analysis (MF-DCCA), Fluctuation and Noise Letters 16 (2017) 1750004–226. doi: 10.1142/120S0219477517500043 .
[183] F. Ma, Y. Wei, D. Huang, Multifractal detrended cross-correlation analysis between the Chinese stock market and surrounding stock markets, Physica A: Statistical Mechanics and its Applications 392 (2013) 1659–1670.
[184] Y. Wang, Y. Wei, C. Wu, Cross-correlations between Chinese A-share and B-share markets, Physica A: Statistical Mechanics and its Applications 389 (2010) 5468–5478. doi: 10.1016/j.physa.2010.08.029 .
[185] P. Yue, H.-C. Xu, W. Chen, X. Xiong, W.-X. Zhou, Liner and nonlinear correlations in the order aggressiveness of chinese stocks, Fractals 25 (2017) 1750041.
[186] F. Ma, Y. Wei, D. Huang, L. Zhao, Cross-correlations between West Texas Intermediate crude oil and the stock markets of the BRIC, Physica A: Statistical Mechanics and its Applications 392 (2013) 5356–5368.
[187] F. Ma, Q. Zhang, C. Peng, Y. Wei, Multifractal detrended cross-correlation analysis of the oil-dependent economies: Evidence from the West Texas intermediate crude oil and the GCC stock markets, Physica A: Statistical Mechanics and its Applications 410 (2014) 154–166. doi: 10.1016/j.physa.2014.05.023 .
[188] Y. Wang, Y. Wei, C. Wu, Detrended fluctuation analysis on spot and futures markets of West Texas Intermediate crude oil, Physica A: Statistical Mechanics and its Applications 390 (2011) 864–875. doi: 10.1016/j.physa.2010.11.017 .
[189] X. Zhuang, Y. Wei, F. Ma, Multifractality, efficiency analysis of Chinese stock market and its cross-correlation with WTI crude oil price, Physica A: Statistical Mechanics and its Applications 430 (2015) 101–113.
[190] X. Zhuang, Y. Wei, B. Zhang, Multifractal detrended cross-correlation analysis of carbon and crude oil markets, Physica A: Statistical Mechanics and its Applications 399 (2014) 113–125. doi: 10.1016/j.physa.2013.12.048 .
[191] L. Xinsheng, L. Jianfeng, Z. Ying, Q. Yubo, Cross-correlations between RMB exchange rate and international commodity markets, Physica A: Statistical Mechanics and its Applications 486 (2017) 168–182.
[192] Z. Zhang, Y. Zhang, D. Shen, W. Zhang, The dynamic cross-correlations between mass media news, new media news, and stock returns, Complexity 2018 (2018) 1–11.
[193] Z. Zhang, Y. Zhang, D. Shen, W. Zhang, The cross-correlations between online sentiment proxies: Evidence from Google Trends and Twitter, Physica A: Statistical Mechanics and its Applications 508 (2018) 67–75.
[194] Z. Da, J. Engelberg, P. Gao, The sum of all FEARS investor sentiment and asset prices, Review of Financial Studies 28 (2015) 1–32. doi: 10.1093/rfs/hhu072 .
[195] W. Zhang, P. Wang, X. Li, D. Shen, Twitter’s daily happiness sentiment and international stock returns: Evidence from linear and nonlinear causality tests, Journal of Behavioral and Experimental Finance 18 (2018) 50–53.
[196] M. Gronwald, C. Sattarhof, How to Measure Financial Market Efficiency?: A Multifractality-Based Quantitative Approach with an Application to the European Carbon Market, Working Paper 5, University of Aberdeen Business School, 2018.
[197] T. Takaishi, Statistical properties and multifractality of Bitcoin, Physica A: Statistical Mechanics and its Applications 506 (2018) 507–519. doi: 10.1016/j.physa.2018.04.046 .
[198] L. Kirichenko, V. Bulakh, T. Radivilova, Fractal time series analysis of social network activities, 2017 4th International Scientific-Practical Conference Problems of Infocommunications. Science and Technology (PIC S&T) (2017). doi: 10.1109/infocommst.2017.8246438 .
[199] Y. Jiang, H. Nie, W. Ruan, Time-varying long-term memory in Bitcoin market, Finance Research Letters 25 (2018) 280–284.
[200] A. Sensoy, E. Hacihasanoglu, Time-varying long range dependence in energy futures markets, Energy Economics 46 (2014) 318–327. doi: 10.1016/j.eneco.2014.09.023 .
[201] K. H. Al-Yahyaee, W. Mensi, S.-M. Yoon, Efficiency, multifractality, and the long-memory property of the Bitcoin market: A comparative analysis with stock, currency, and gold markets, Finance Research Letters 27 (2018) 228–234. doi: 10.1016/j.frl.2018.03.017 .
[202] G. Gajardo, W. D. Kristjanpoller, M. Minutolo, Does Bitcoin exhibit the same asymmetric multifractal cross-correlations with crude oil, gold and DJIA as the Euro, Great British Pound and Yen?, Chaos, Solitons & Fractals 109 (2018) 195–205. doi: 10.1016/j.chaos.2018.02.0 .
[203] S. Lahmiri, S. Bekiros, A. Salvi, Long-range memory, distributional variation and randomness of bitcoin volatility, Chaos, Solitons & Fractals 107 (2018) 43–48. doi: 10.1016/j.chaos.2017.12.018 .
[204] W. Zhang, P. Wang, X. Li, D. Shen, Multifractal Detrended Cross-Correlation Analysis of the Return-Volume Relationship of Bitcoin Market, Complexity 2018 (2018) 1–20.
[205] A. Ganchuk, V. Derbentsev, V. Soloviev, Multifractal Properties of the Ukraine Stock Market, 2006. arXiv:physics/0608009v1 .
[206] K. Hu, P. C. Ivanov, Z. Chen, P. Carpena, H. Eugene Stanley, Effect of trends on detrended fluctuation analysis, Phys. Rev. E 64 (2001) 011114. doi: 10.1103/PhysRevE.64.011114 .
[207] Z. Chen, P. C. Ivanov, K. Hu, H. E. Stanley, Effect of nonstationarities on detrended fluctuation analysis, Phys. Rev. E 65 (2002) 041107. doi: 10.1103/PhysRevE.65.041107 .
[208] J. R. Thompson, J. R. Wilson, Multifractal detrended fluctuation analysis: Practical applications to financial time series, Mathematics and Computers in Simulation 126 (2016) 63–88. doi: 10.1016/j.matcom.2016.03.003 .
[209] D. Clark, L. Tarra, A. Berera, Chaos and information in two-dimensional turbulence, Phys. Rev. Fluids 5 (2020) 064608. doi: 10.1103/PhysRevFluids.5.064608 .
[210] R. Engelken, F. Wolf, L. F. Abbott, Lyapunov spectra of chaotic recurrent neural networks, 2020. arXiv:2006.02427 .
[211] K. Krishnamurthy, T. Can, D. J. Schwab, Theory of gating in recurrent neural networks, 2021. arXiv:2007.14823 .
[212] W. S. Lee, S. Flach, Deep learning of chaos classification, 2020. arXiv:2004.10980 .
[213] M. B. Tayel, E. I. AlSaba, Robust and sensitive method of Lyapunov exponent for heart rate variability, 2015. arXiv:1508.00996 .
[214] H. De Thélin, T. Gauthier, G. Vigny, Parametric Lyapunov exponents, Bulletin of the London Mathematical Society (2020). doi: 10.1112/blms.12441 .
[215] M. Cencini, F. Cecconi, A. Vulpiani, Chaos: From Simple Models to Complex Systems, volume 17 of Series on Advances in Statistical Mechanics, 2010. doi: 10.1142/7351 .
[216] P. Grassberger, I. Procaccia, Characterization of strange attractors, Phys. Rev. Lett. 50 (1983) 346–349. URL: https://link.aps.org/doi/10.1103/PhysRevLett.50.346. doi: 10.1103/PhysRevLett.50.346 .
[217] J. C. Sprott, Chaos and Time-Series Analysis, Princeton University Press, 2001.
[218] L.-S. Young, Mathematical theory of Lyapunov exponents, Journal of Physics A: Mathematical and Theoretical 46 (2013) 254001.
[219] C. J. Gavilán-Moreno, G. Espinosa-Paredes, Using largest Lyapunov exponent to confirm the intrinsic stability of boiling water reactors, Nuclear Engineering and Technology 48 (2016) 434–447. doi: 10.1016/j.net.2016.01.002 .
[220] A. Prieto-Guerrero, G. Espinosa-Paredes, Dynamics of BWRs and mathematical models, 2019, pp. 193–268. doi: 10.1016/B978-0-08-102445-4.00005-9 .
[221] D. Nychka, S. Ellner, A. R. Gallant, D. McCaffrey, Finding chaos in noisy systems, Journal of the Royal Statistical Society: Series B (Methodological) 54 (1992) 399–426.
[222] A. Wolf, J. Swift, H. L. Swinney, J. Vastano, Determining Lyapunov exponents from a time series, Physica D: Nonlinear Phenomena 16 (1985) 285 – 317.
[223] M. Sano, Y. Sawada, Measurement of the Lyapunov spectrum from a chaotic time series, Phys. Rev. Lett. 55 (1985) 1082–1085. doi: 10.1103/PhysRevLett.55.1082 .
[224] J. P. Eckmann, S. O. Kamphorst, D. Ruelle, S. Ciliberto, Liapunov exponents from time series, Phys. Rev. A 34 (1986) 4971–4979. doi: 10.1103/PhysRevA.34.4971 .
[225] M. T. Rosenstein, J. J. Collins, C. J. De Luca, A practical method for calculating largest Lyapunov exponents from small data sets, Physica D: Nonlinear Phenomena 65 (1993) 117–134. doi: 10.1016/0167-2789(93)90009-P .
[226] U. Parlitz, Identification of true and spurious Lyapunov exponents from time series, International Journal of Bifurcation and Chaos 02 (1992) 155–165.
[227] M. Balcerzak, D. Pikunov, A. Dabrowski, The fastest, simplified method of Lyapunov exponents spectrum estimation for continuous-time dynamical systems, Nonlinear Dynamics 94 (2018) 3053–3065. doi: 10.1007/s11071-018-4544-z .
[228] J. Gao, Y. Cao, W.-W. Tung, J. Hu, Multiscale Analysis of Complex Time Series: Integration of Chaos and Random Fractal Theory, and Beyond, Wiley, 2007. doi: 10.1002/9780470191651 .
[229] J. Gao, J. Hu, W.-W. Tung, Y. Zheng, Multiscale analysis of economic time series by scale-dependent Lyapunov exponent, Quantitative Finance 13 (2013) 265–274. doi: 10.1080/14697688.2011.580774 .
[230] V. Soloviev, D. Chabanenko, S. I., Using the scale-dependent Lyapunov exponent as a measure of complexity, in: M. Gedz (Ed.), The banking system of Ukraine in the context of globalization of financial markets: proceedings of VII International scientific and practical conference, CHIBS UBS NBU, 2012, pp. 469–471.
[231] V. Soloviev, I. Stratiychuk, Use of indicator-precursors of crisis phenomena of the financial market on the basis of the scale-dependent Lyapunov exponent, The problems of economics 2 (2013) 279–283.
[232] J.-P. Eckmann, S. O. Kamphorst, D. Ruelle, Recurrence plots of dynamical systems, Europhysics Letters (EPL) 4 (1987) 973–977. doi: 10.1209/0295-5075/4/9/004 .
[233] J. Scheinkman, B. Lebaron, Nonlinear dynamics and stock returns, The Journal of Business 62 (1989) 311–37.
[234] H. D. I. Abarbanel, R. Brown, J. J. Sidorowich, L. S. Tsimring, The analysis of observed chaotic data in physical systems, Rev. Mod. Phys. 65 (1993) 1331–1392. doi: 10.1103/RevModPhys.65.1331 .
[235] V. S. Kulkarni, Complexity, chaos, and the duffing-oscillator model: An analysis of inventory fluctuations in markets, 2013. arXiv:1308.1616 .
[236] O. Bajo-Rubio, F. Fernandez-Rodriguez, S. Sosvilla-Rivero, Chaotic behaviour in exchange-rate series : First results for the Peseta-U.S. dollar case, Economics Letters 39 (1992) 207–211. URL: https://ideas.repec.org/a/eee/ecolet/v39y1992i2p207-211.html.
[237] W. D. Dechert, R. Gencay, Lyapunov exponents as a nonparametric diagnostic for stability analysis, Journal of Applied Econometrics 7 (1992) S41–S60. doi: 10.1002/jae.3950070505 .
[238] R. Gençay, A statistical framework for testing chaotic dynamics via Lyapunov exponents, Physica D: Nonlinear Phenomena 89 (1996) 261–266. doi: 10.1016/0167-2789(95)00230-8 .
[239] S. Shreemoyee, C. Vikhyat, Analysing the behaviour of local hurst exponent and Lyapunov exponent for prediction of market crashes, Engineering and Technology International Journal of Economics and Management Engineering 13 (2019).
[240] S. Srinivasan, S. Prasad, S. Patil, G. Lazarou, J. Picone, Estimation of Lyapunov spectra from a time series, in: Proceedings of the IEEE SoutheastCon 2006, 2006, pp. 192–195. doi: 10.1109/second.2006.1629348 .
[241] L. Mastroeni, P. Vellucci, ”Chaos” in energy and commodity markets: a controversial matter, 2017. arXiv:1611.07432 .
[242] V. Plakandaras, R. Gupta, M. E. Wohar, Persistence of economic uncertainty: a comprehensive analysis, Applied Economics 51 (2019) 4477–4498. doi: 10.1080/00036846.2019.1591607 .
[243] G. Chakrabarti, C. Sen, Anatomy of Global Stock Market Crashes, number 978-81-322-0463-3 in SpringerBriefs in Economics, Springer, 2012. doi: 10.1007/978-81-322-0463-3 .
[244] J. Liesen, V. Mehrmann, Linear Algebra, Springer Undergraduate Mathematics Series, 1 ed., Springer, 2015.
[245] C. Touzé, A. Chaigne, Lyapunov exponents from experimental time series. Application to cymbal vibrations, Acustica 86 (2000) 1–36.
[246] B. Podobnik, A. Valentinčič, D. Horvatić, H. E. Stanley, Asymmetric Lévy flight in financial ratios, Proceedings of the National Academy of Sciences of the United States of America 108 (2011) 17883—17888. doi: 10.1073/pnas.1113330108 .
[247] L. Bachelier, Théorie de la spéculation, Annales scientifiques de l’École Normale Supérieure 3e série, 17 (1900) 21–86. URL: http://www.numdam.org/item/ASENS_1900_3_17__21_0/. doi: 10.24033/asens.476 .
[248] X. Gabaix, P. Gopikrishnan, V. Plerou, H. Stanley, A theory of power-law distributions in financial market fluctuations, Nature 423 (2003) 267–70. doi: 10.1038/nature01624 .
[249] M. Kateregga, S. Mataramvura, D. Taylor, Parameter estimation for stable distributions with application to commodity futures log-returns, Cogent Economics & Finance 5 (2017) 1318813. doi: 10.1080/23322039.2017.1318813 .
[250] D. Krężołek, The application of alpha-stable distributions in portfolio selection problem – the case of metal market, Studia Ekonomiczne 247 (2015) 57–68.
[251] T. Lux, D. Sornette, On rational bubbles and fat tails, Journal of Money, Credit and Banking 34 (2002) 589–610.
[252] Y. Malevergne, V. Pisarenko, D. Sornette, Empirical distributions of stock returns: between the stretched exponential and the power law?, Quantitative Finance 5 (2005) 379–401. doi: 10.1080/14697680500151343 .
[253] Y. Malevergne, V. Pisarenko, D. Sornette, Testing the Pareto against the lognormal distributions with the uniformly most powerful unbiased test applied to the distribution of cities, Phys. Rev. E 83 (2011) 036111. doi: 10.1103/PhysRevE.83.036111 .
[254] N. N. Taleb, On the statistical differences between binary forecasts and real-world payoffs, International Journal of Forecasting 36 (2020) 1228–1240. doi: 10.1016/j.ijforecast.2019.12.004 .
[255] N. N. Taleb, Y. Bar-Yam, P. Cirillo, On single point forecasts for fat-tailed variables, 2020. arXiv:2007.16096 .
[256] P. Gopikrishnan, M. Meyer, L. Amaral, H. Stanley, Inverse cubic law for the distribution of stock price variations, The European Physical Journal B 3 (1998) 139–140. doi: 10.1007/s100510050292 .
[257] P. Gopikrishnan, V. Plerou, L. A. Nunes Amaral, M. Meyer, H. E. Stanley, Scaling of the distribution of fluctuations of financial market indices, Phys. Rev. E 60 (1999) 5305–5316. doi: 10.1103/PhysRevE.60.5305 .
[258] B. Podobnik, D. Horvatic, A. M. Petersen, H. E. Stanley, Cross-correlations between volume change and price change, Proceedings of the National Academy of Sciences of the United States of America 106 (2009) 22079—22084. doi: 10.1073/pnas.0911983106 .
[259] B. Podobnik, K. Matia, A. Chessa, P. C. Ivanov, Y. Lee, H. E. Stanley, Time evolution of stochastic processes with correlations in the variance: stability in power-law tails of distributions, Physica A Statistical Mechanics and its Applications 300 (2001) 300–309. doi: 10.1016/S0378- 4371(01)00390- 9 .
[260] X. Gabaix, Power laws in economics and finance, Annual Review of Economics 1 (2009) 255–294. doi: 10.1146/annurev.economics.050708.142940 .
[261] Z. Kostanjčar, B. Jeren, Emergence of power-law and two-phase behavior in financial market fluctuations, Advances in Complex Systems 16 (2013) 1350008. doi: 10.1142/S0219525913500082 .
[262] A. Chakraborty, S. Easwaran, S. Sinha, Deviations from universality in the fluctuation behavior of a heterogeneous complex system reveal intrinsic properties of components: The case of the international currency market, 2018. arXiv:1606.06111 .
[263] T. Takaishi, Recent scaling properties of bitcoin price returns, 2020. arXiv:2009.06874 .
[264] S. Drożdż, R. Gȩbarowski, L. Minati, P. Oświȩcimka, M. Waa̧ torek, Bitcoin market route to maturity? Evidence from return fluctuations, temporal correlations and multiscaling effects, Chaos: An Interdisciplinary Journal of Nonlinear Science 28 (2018) 071101. doi: 10.1063/1.5036517 .
[265] T. Takaishi, Time-varying properties of asymmetric volatility and multifractality in Bitcoin, PLOS ONE 16 (2021) e0246209. doi: 10.1371/journal.pone.0246209 .
[266] S. Begušić, Z. Kostanjčar, H. Eugene Stanley, B. Podobnik, Scaling properties of extreme price fluctuations in Bitcoin markets, Physica A: Statistical Mechanics and its Applications 510 (2018) 400–406. doi: 10.1016/j.physa.2018.06.1 .
[267] B. Mandelbrot, The variation of certain speculative prices, The Journal of Business 36 (1963).
[268] P. Levy, Théorie des erreurs. La loi de Gauss et les lois exceptionnelles, Bulletin de la Société Mathématique de France 52 (1924) 49–85. doi: 10.24033/bsmf.1046 .
[269] B. Mandelbrot, The Pareto-Lévy Law and the Distribution of Income, International Economic Review 1 (1960) 79–106.
[270] E. S. Andersen, Mathematica Scandinavica 3 (1955) 185–187. URL: http://www.jstor.org/stable/24490356.
[271] I. A. Koutrouvelis, Regression-type estimation of the parameters of stable laws, Journal of the American Statistical Association 75 (1980) 918–928. doi: 10.1080/01621459.1980.10477573 .
[272] B. Brorsen, S. Yang, Maximum likelihood estimates of symmetric stable distribution parameters, Communications in Statistics Part B: Simulation and Computation 19 (1990) 1459–1464. doi: 10.1080/03610919008812928 .
[273] J. Nolan, Maximum Likelihood Estimation and Diagnostics for Stable Distributions, Birkhäuser, Boston, MA, 2001, pp. 379–400. doi: 10.1007/978-1-4612-0197-7_17 .
[274] E. F. Fama, R. Roll, Parameter estimates for symmetric stable distributions, Journal of the American Statistical Association 66 (1971) 331–338. doi: 10.1080/01621459.1971.10482264 .
[275] J. H. McCulloch, Simple consistent estimators of stable distribution parameters, Communications in Statistics - Simulation and Computation 15 (1986) 1109–1136. doi: 10.1080/03610918608812563 .
[276] X. Ma, C. L. Nikias, Parameter estimation and blind channel identification in impulsive signal environments, IEEE Transactions on Signal Processing 43 (1995) 2884–2897. doi: 10.1109/78.476432 .
[277] M. Shao, C. L. Nikias, Signal processing with fractional lower order moments: stable processes and their applications, Proceedings of the IEEE 81 (1993) 986–1010. doi: 10.1109/5.231338 .
[278] J.-M. Nicolas, 1 - Introduction aux Statistiques de deuxiéme espéce : applications des Logs-moments et des Logs-cumulants á l’analyse des lois d’images radar, Traitement Du Signal 19 (2002) 139–167.
[279] E. E. Kuruoglu, Density parameter estimation of skewed α-stable distributions, IEEE Transactions on Signal Processing 49 (2001) 2192–2201. doi: 10.1109/78.950775 .
[280] W. H. DuMouchel, On the Asymptotic Normality of the Maximum-Likelihood Estimate when Sampling from a Stable Distribution, The Annals of Statistics 1 (1973) 948 – 957. doi: 10.1214/aos/1176342516 .
[281] V. M. Zolotarev, One-dimensional stable distributions, volume 65 of Translations of Mathematical Monographs, American Mathematical Society, Providence, RI, 1986. Translated from the Russian by H. H. McFaden, Translation edited by Ben Silver.
[282] J. M. Chambers, C. L. Mallows, B. W. Stuck, A method for simulating stable random variables, Journal of the American Statistical Association 71 (1976) 340–344. URL: http://www.jstor.org/stable/2285309.
[283] S. Bianchi, A. Pantanella, Pointwise regularity exponents and well-behaved residuals in stock markets, International Journal of Trade, Economics and Finance 2 (2011) 52–60. doi: 10.7763/IJTEF.2011.V2.78 .
[284] V. I. Arnold, A. Avez, Ergodic problems of classical mechanics, ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 50 (1970) 506–506. doi: 10.1002/zamm.19700500721 .
[285] K. Umeno, Ergodic transformations on R preserving Cauchy laws, Nonlinear Theory and Its Applications, IEICE 7 (2016) 14–20. doi: 10.1587/nolta.7.14 .
[286] I. A. Koutrouvelis, An iterative procedure for the estimation of the parameters of stable laws, Communications in Statistics - Simulation and Computation 10 (1981) 17–28. doi: 10.1080/03610918108812189 .
[287] V. Soloviev, V. Solovieva, D. Chabanenko, Dynamics of α-stable Levy process parameters for returns distribution of the financial time series, in: O. Chernyak, P. Zakharchenko (Eds.), Contemporary concepts of forecasting the development of complex socio-economic systems, FO-P Tkachuk O V, Berdyansk, 2014, pp. 257–264.
[288] H. Poincaré, The Three-Body Problem and the Equations of Dynamics, Astrophysics and Space Science Library, 1 ed., Springer, Cham, 2017. doi: 10.1007/978-3-319-52899-1 .
[289] P. Faure, H. Korn, A new method to estimate the Kolmogorov entropy from recurrence plots: its application to neuronal signals, Physica D: Nonlinear Phenomena 122 (1998) 265–279. doi: 10.1016/S0167-2789(98)00177-8 .
[290] M. Thiel, M. C. Romano, J. Kurths, Analytical description of recurrence plots of white noise and chaotic processes, Applied Nonlinear Dynamics 11 (2003).
[291] M. Thiel, M. Romano, J. Kurths, R. Meucci, E. Allaria, F. Arecchi, Influence of observational noise on the recurrence quantification analysis, Physica D: Nonlinear Phenomena 171 (2002) 138–152. doi: 10.1016/S0167- 2789(02)00586- 9 .
[292] L. Charles, J. Webber, I. Cornel, M. Norbert (Eds.), Recurrence Plots and Their Quantifications: Expanding Horizons, volume 180 of Springer Proceedings in Physics, Springer, 2015. doi: 10.1007/978-3-319-29922-8 .
[293] N. Marwan, M. Carmen Romano, M. Thiel, J. Kurths, Recurrence plots for the analysis of complex systems, Physics Reports 438 (2007) 237–329. doi: 10.1016/j.physrep.2006.11.001 .
[294] G. Jianbo, C. Huaqing, On the structures and quantification of recurrence plots, Physics Letters A 270 (2000) 75–87. doi: 10.1016/S0375-9601(00)00304-2 .
[295] N. Marwan, N. Wessel, U. Meyerfeldt, A. Schirdewan, J. Kurths, Recurrence-plot-based measures of complexity and their application to heart-rate-variability data, Phys. Rev. E 66 (2002) 026702. doi: 10.1103/PhysRevE.66.026702 .
[296] C. L. Webber, J. P. Zbilut, Dynamical assessment of physiological systems and states using recurrence plot strategies, Journal of Applied Physiology 76 (1994) 965–973. doi: 10.1152/jappl.1994.76.2.965 .
[297] J. P. Zbilut, C. L. Webber, Embeddings and delays as derived from quantification of recurrence plots, Physics Letters A 171 (1992) 199–203.
[298] G. Corso, T. L. Prado, G. Z. dos S. Lima, S. R. Lopes, A novel entropy recurrence quantification analysis, 2017. arXiv:1707.00944 .
[299] M. A. Little, P. E. McSharry, S. J. Roberts, D. A. Costello, I. M. Moroz, Exploiting nonlinear recurrence and fractal scaling properties for voice disorder detection, BioMedical Engineering OnLine 6 (2007) 23. doi: 10.1186/1475- 925x- 6- 23 .
[300] H. Rabarimanantsoa, L. Achour, C. Letellier, A. Cuvelier, J.-F. Muir, Recurrence plots and Shannon entropy for a dynamical analysis of asynchronisms in noninvasive mechanical ventilation, Chaos: An Interdisciplinary Journal of Nonlinear Science 17 (2007) 013115. doi: 10.1063/1.2435307 .
[301] S. R. Lopes, T. L. Prado, G. Corso, G. Z. dos S. Lima, J. Kurths, Parameter-free quantification of stochastic and chaotic signals, Chaos, Solitons & Fractals 133 (2020) 109616. doi: 10.1016/j.chaos.2020.109616 .
[302] A. L. Goldberger, L. A. N. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, H. E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet, Circulation 101 (2000) e215–e220. doi: 10.1161/01.CIR.101.23.e215 .
[303] M. Kirchner, P. Schubert, M. Liebherr, C. T. Haas, Detrended Fluctuation Analysis and Adaptive Fractal Analysis of Stride Time Data in Parkinson’s Disease: Stitching Together Short Gait Trials, PLOS ONE 9 (2014) 1–6. doi: 10.1371/journal.pone.0085787 .
[304] I. Prigogine, From Being to Becoming Time and Complexity in the Physical Sciences, 1 ed., W.H. Freeman & Co, 1981.
[305] M. Costa, A. L. Goldberger, C.-K. Peng, Multiscale entropy analysis of biological signals, Phys. Rev. E 71 (2005) 021906. doi: 10.1103/PhysRevE.71.021906 .
[306] V. Soloviev, O. Rybchinska, Quantitative method of estimating the length of the recession according to the irreversibility of stock indices, Bulletin of the Kryvyi Rih Economic Institute KEI 2 (2010) 52–56.
[307] S. Daw, C. Finney, M. Kennel, Symbolic approach for measuring temporal ”irreversibility”, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics 62 (2000) 1912–21. doi: 10.1103/PhysRevE.62.1912 .
[308] C. Diks, J. C. van Houwelingen, F. Takens, J. DeGoede, Reversibility as a criterion for discriminating time series, Physics Letters A 201 (1995) 221–228. doi: 10.1016/0375-9601(95)00239-Y .
[309] J. F.Donges, R. V. Donner, J. Kurths, Testing time series irreversibility using complex network methods, EPL (Europhysics Letters) 102 (2013) 10004. doi: 10.1209/0295-5075/102/10004 .
[310] P. Guzik, J. Piskorski, T. Krauze, A. Wykretowicz, H. Wysocki, Heart rate asymmetry by Poincaré plots of RR intervals, Biomedizinische Technik. Biomedical engineering 51 (2006) 272–5. doi: 10.1515/BMT.2006.054 .
[311] M. B. Kennel, Testing time symmetry in time series using data compression dictionaries, Phys. Rev. E 69 (2004) 056208. URL: https://link.aps.org/doi/10.1103/PhysRevE.69.056208. doi: 10.1103/PhysRevE.69.056208 .
[312] L. Lacasa, A. Nuñez, E. Roldán, J. M. R. Parrondo, B. Luque, Time series irreversibility: a visibility graph approach, The European Physical Journal B 85 (2012). doi: 10.1140/epjb/e2012-20809-8 .
[313] A. Porta, S. Guzzetti, N. Montano, T. Gnecchi-Ruscone, R. Furlan, A. Malliani, Time reversibility in short-term heart period variability, in: Computers in Cardiology, volume 33, 2006, pp. 77–80. 2006 Computers in Cardiology, CIC ; Conference date: 17-09-2006 Through 20-09-2006.
[314] M. Zanin, A. Rodríguez-González, E. Menasalvas Ruiz, D. Papo, Assessing time series reversibility through permutation patterns, Entropy 20 (2018). doi: 10.3390/e20090665 .
[315] W. Yao, W. Yao, D. Yao, D. Guo, J. Wang, Shannon entropy and quantitative time irreversibility for different and even contradictory aspects of complex systems, Applied Physics Letters 116 (2020) 014101. doi: 10.1063/1.5133419 .
[316] J. Li, P. Shang, X. Zhang, Time series irreversibility analysis using Jensen–Shannon divergence calculated by permutation pattern, Nonlinear Dynamics 96 (2019) 2637–2652.
[317] R. Flanagan, L. Lacasa, Irreversibility of financial time series: A graph-theoretical approach, Physics Letters A 380 (2016) 1689–1697. doi: 10.1016/j.physleta.2016.03.011 .
[318] J.-A. Martín-Gonzalo, I. Pulido-Valdeolivas, Y. Wang, T. Wang, G. Chiclana-Actis, M. d. C. Algarra-Lucas, I. Palmí-Cortés, J. Fernández Travieso, M. D. Torrecillas-Narváez, A. A. Miralles-Martinez, E. Rausell, D. Gómez-Andrés, M. Zanin, Permutation Entropy and Irreversibility in Gait Kinematic Time Series from Patients with Mild Cognitive Decline and Early Alzheimer’s Dementia, Entropy 21 (2019) 868. doi: 10.3390/e21090868 .
[319] J. H. Martínez, J. L. Herrera-Diestra, M. Chavez, Detection of time reversibility in time series by ordinal patterns analysis, Chaos: An Interdisciplinary Journal of Nonlinear Science 28 (2018) 123111. doi: 10.1063/1.5055855 .
[320] Y. Wenpo, J. Dai, M. Perc, J. Wang, D. Yao, D. Guo, Permutation-based time irreversibility in epileptic electroencephalograms, Nonlinear Dynamics 100 (2020) 907–919. doi: 10.1007/s11071-020-05506-9 .
[321] W. Yao, W. Yao, J. Wang, Equal heartbeat intervals and their effects on the nonlinearity of permutation-based time irreversibility in heart rate, Physics Letters A 383 (2019) 1764–1771. doi: 10.1016/j.physleta.2019.03.002 .
[322] G. G. Malinetsky, Theory of self-organization. on the cusp of IV paradigm, Computer research and modeling 5 (2013) 315–366. doi: 10.20537/2076-7633-2013-5-3-315-336 .
[323] T. U. Grund, Dynamical Processes on Complex Networks (4th ed.) by A. Barrat, M. Barthélemy, & A. Vespignani, The Journal of Mathematical Sociology 37 (2013) 131–132. doi: 10.1080/0022250X.2012.728886 .
[324] R. Cohen, S. Havlin, Complex Networks: Structure, Robustness and Function, Cambridge University Press, 2010. doi: 10.1017/CBO9780511780356 .
[325] G. Bianconi, Interdisciplinary and physics challenges of network theory, EPL (Europhysics Letters) 111 (2015) 56001. doi: 10.1209/0295- 5075/111/56001 .
[326] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D.-U. Hwang, Complex networks: Structure and dynamics, Physics Reports 424 (2006) 175–308. doi: 10.1016/j.physrep.2005.10.009 .
[327] H. B. Danilchuk, V. N. Soloviev, Dynamics of graph spectral entropy in financial crisis, in: Socio-Economic Aspects of Economics and Managment, Aspekt Publishing of Budget Printing Cente, 2015, pp. 227–234.
[328] V. Soloviev, Network measures of complexity of socio-economic systems, Bulletin of Cherkasy University 38 (2015) 67–79.
[329] V. Soloviev, V. Solovieva, A. Tuliakova, Visibility graphs and precursors of stock crashes, Neuro-Fuzzy Modeling Techniques in Economics 8 (2019) 3–29. doi: 10.33111/nfmte.2019.003 .
[330] V. Soloviev, V. Solovieva, A. Tuliakova, A. Hostryk, L. Pichl, Complex networks theory and precursors of financial crashes, CEUR Workshop Proceedings 2713 (2020) 53–67.
[331] S. Boccaletti, G. Bianconi, R. Criado, C. del Genio, J. Gómez-Gardeñes, M. Romance, I. Sendiña-Nadal, Z. Wang, M. Zanin, The structure and dynamics of multilayer networks, Physics Reports 544 (2014) 1–122. doi: 10.1016/j.physrep.2014.07.001 , the structure and dynamics of multilayer networks.
[332] M.-C. Qian, Z.-Q. Jiang, W.-X. Zhou, Universal and nonuniversal allometric scaling behaviors in the visibility graphs of world stock market indices, Journal of Physics A: Mathematical and Theoretical 43 (2010) 335002. doi: 10.1088/1751- 8113/43/33/335002 .
[333] J. L. Birch, Modelling Financial Markets using Methods from Network Theory, Ph.D. thesis, University of Liverpool, 2015.
[334] F. Liu, N. Wang, D. Wei, Analysis of chinese stock market by using the method of visibility graph, The Open Cybernetics & Systemics Journal 11 (2017) 36–43. doi: 10.2174/1874110X01711010036 .
[335] W. Yan, E. van Tuyll van Serooskerken, Forecasting financial extremes: A network degree measure of super-exponential growth, PLOS ONE 10 (2015) 1–15. doi: 10.1371/journal.pone.0128908 .
[336] A. Johansen, O. Ledoit, D. Sornette, Crashes as critical points, International Journal of Theoretical and Applied Finance 03 (2000) 219–255. doi: 10.1142/S0219024900000115 .
[337] M. D. Vamvakaris, A. A. Pantelous, K. M. Zuev, Time series analysis of S&P 500 index: A horizontal visibility graph approach, Physica A: Statistical Mechanics and its Applications 497 (2018) 41–51. doi: 10.1016/j.physa.2018.01.010 .
[338] M. Serafino, A. Gabrielli, G. Caldarelli, G. Cimini, Statistical validation of financial time series via visibility graph, 2017. arXiv:1710.10980 .
[339] C. Coquidé, J. Lages, D. L. Shepelyansky, Contagion in bitcoin networks, Lecture Notes in Business Information Processing (2019) 208–219. doi: 10.1007/978-3-030-36691-9_18 .
[340] T. Squartini, A. Gabrielli, D. Garlaschelli, T. Gili, A. Bifone, F. Caccioli, Complexity in neural and financial systems: From time-series to networks, Complexity 2018 (2018) 1–2. doi: 10.1155/2018/3132940 .
[341] L. Lacasa, V. Nicosia, V. Latora, Network structure of multivariate time series, Scientific Reports 5 (2015). doi: 10.1038/srep15508 .
[342] L. Bargigli, G. di Iasio, L. Infante, F. Lillo, F. Pierobon, The multiplex structure of interbank networks, Quantitative Finance 15 (2015) 673–691. doi: 10.1080/14697688.2014.968356 .
[343] S. Li, S. Wen, Multiplex Networks of the Guarantee Market: Evidence from China, Complexity 2017 (2017) 1–7. doi: 10.1155/2017/9781890 .
[344] C. Stephen, Dynamic phase and group detection in pedestrian crowd data using multiplex visibility graphs, Procedia Computer Science 53 (2015) 410–419. doi: 10.1016/j.procs.2015.07.318 .
[345] R. V. Donner, M. Small, J. F. Donges, N. Marwan, Y. Zou, R. Xiang, J. Kurths, Recurrence-based time series analysis by means of complex network methods, International Journal of Bifurcation and Chaos 21 (2011) 1019–1046. doi: 10.1142/S0218127411029021 .
[346] L. Lacasa, B. Luque, F. Ballesteros, J. Luque, J. C. Nuño, From time series to complex networks: The visibility graph, Proceedings of the National Academy of Sciences 105 (2008) 4972–4975. doi: 10.1073/pnas.0709247105 .
[347] V. Soloviev, A. Tuliakova, Graphodynamical methods for studying the complexity of modern stock markets, Neuro-fuzzy modeling technologies in economics 5 (2016) 152–179.
[348] J. Iacovacci, L. Lacasa, Sequential motif profile of natural visibility graphs, Physical Review E 94 (2016). doi: 10.1103/physreve.94.052309 .
[349] A. de la Concha, S. Martinez-Jaramillo, C. Carmona, Multiplex Financial Networks: Revealing the Level of Interconnectedness in the Banking System, in: Complex Networks & Their Applications VI, Springer International Publishing, 2018, pp. 1135–1148. doi: 10.1007/978-3-319-72150-7_92 .
[350] G. Colangelo, F. M. Ciurana, L. C. Bianchet, R. J. Sewell, M. W. Mitchell, Simultaneous tracking of spin angle and amplitude beyond classical limits, Nature 543 (2017) 525–528. doi: 10.1038/nature21434 .
[351] E. G. Hidalgo, Quantum econophysics, 2006. arXiv:physics/0609245 .
[352] V. P. Maslov, Econophysics and quantum statistics, Math. Notes 72 (2002) 811–818. doi: 10.1023/A:1021489913179 .
[353] V. Soloviev, O. Serdiuk, Quantum econophysical precursors of cryptocurrency crashes, Bulletin of Cherkasy University 1 (2009) 3–16. doi: 10.31651/2076-5886-2019-1-3-16 .
[354] E. Benítez Rodríguez, L. Aguilar, Disturbance-disturbance uncertainty relation: The statistical distinguishability of quantum states determines disturbance, Scientific Reports 8 (2018) 4010. doi: 10.1038/s41598- 018- 22336- 3 .
[355] L. A. Rozema, A. Darabi, D. H. Mahler, A. Hayat, Y. Soudagar, A. M. Steinberg, Violation of Heisenberg’s Measurement-Disturbance Relationship by Weak Measurements, Phys. Rev. Lett. 109 (2012) 100404. doi: 10.1103/PhysRevLett.109.100404 .
[356] M. Berta, M. Christandl, R. Colbeck, J. M. Renes, R. Renner, The uncertainty principle in the presence of quantum memory, Nature Physics 6 (2010) 659–662. doi: 10.1038/nphys1734 .
[357] R. Prevedel, D. R. Hamel, R. Colbeck, K. Fisher, K. J. Resch, Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement, Nature Physics 7 (2011) 757–761. doi: 10.1038/nphys2048 .
[358] L. Landau, E. Lifshitz, Quantum Mechanics: Non-Relativistic Theory, Course of Theoretical Physics, 3 ed., Butterworth-Heinemann, 1981.
[359] V. Soloviev, Y. Romanenko, Economic analog of Heisenberg uncertainly principle and financial crisis, in: System analysis and information technology : 19-th International conference, SAIT 2017, ESC ”IASA” NTUU ”Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine, 2017, pp. 32–33.
[360] V. Soloviev, S. Yevtushenko, V. Batareyev, Comparative analysis of the cryptocurrency and the stock markets using the Random Matrix Theory, CEUR Workshop Proceedings 2546 (2019) 87–100.
[361] S. Drozdz, J. Kwapien, P. Oswiecimka, Empirics versus RMT in financial cross-correlations, 2007. arXiv:0711.0644 .
[362] F. J. Dyson, Statistical Theory of the Energy Levels of Complex Systems. I, Journal of Mathematical Physics 3 (1962) 140–156. doi: 10.1063/1.1703773 .
[363] E. P. Wigner, On a class of analytic functions from the quantum theory of collisions, Annals of Mathematics 53 (1951) 36–67.
[364] P. W. Anderson, Absence of diffusion in certain random lattices, Phys. Rev. 109 (1958) 1492–1505. URL: https://link.aps.org/doi/10.1103/PhysRev.109.1492. doi: 10.1103/PhysRev.109.1492 .
[365] A. Lipton, A. Sardon, F. Schär, C. Schüpbach, From tether to libra: Stablecoins, digital currency and the future of money, 2020. arXiv:2005.12949 .
[366] C. Karmakar, A. Khandoker, J. Gubbi, M. Palaniswami, Modified Ehlers’ index for improved detection of heart rate asymmetry in Poincaré plot, in: 36th Annual Computers in Cardiology Conference (CinC), volume 36, IEEE, 2009, pp. 169 – 172.
[367] A. Porta, S. Guzzetti, N. Montano, T. Gnecchi-Ruscone, R. Furlan, A. Malliani, Time reversibility in short-term heart period variability, in: 2006 Computers in Cardiology, volume 2006, IEEE, 2006, pp. 77 – 80.
[368] A. Puglisi, D. Villamaina, Irreversible effects of memory, EPL 88 (2009) 30004. doi: 10.1209/0295-5075/88/30004 .
[369] A. Abhishta, R. Joosten, S. Dragomiretskiy, L. Nieuwenhuis, Impact of Successful DDoS Attacks on a Major Crypto-Currency Exchange, in: 2019 27th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP), IEEE, United States, 2019, pp. 379–384. doi: 10.1109/EMPDP.2019.8671642 .
[370] A. A. Kochkarov, S. D. Osipovich, R. A. Kochkarov, Analysis of DDoS Attacks on Bitcoin Cryptocurrency Payment System, Revista ESPACIOS 41 (2020) 29.
[371] M. Conti, E. Sandeep Kumar, C. Lal, S. Ruj, A Survey on Security and Privacy Issues of Bitcoin, IEEE Communications Surveys & Tutorials 20 (2018) 3416–3452. doi: 10.1109/comst.2018.2842460 .
[372] M. Mirkin, Y. Ji, J. Pang, A. Klages-Mundt, I. Eyal, A. Juels, BDoS: Blockchain Denial of Service, 2020. arXiv:1912.07497 .
[373] M. Vasek, M. Thornton, T. Moore, Empirical Analysis of Denial-of-Service Attacks in the Bitcoin Ecosystem, in: R. Böhme, M. Brenner, T. Moore, M. Smith (Eds.), Financial Cryptography and Data Security. FC 2014. Lecture Notes in Computer Science, volume 8438 of FC 2014, Springer, 2014, pp. 57–71. doi: 10.1007/978-3-662-44774-1_5 .
[374] U. Hacioglu (Ed.), Blockchain Economics and Financial Market Innovation, Contributions to Economics, 1 ed., Springer, 2019. doi: 10.1007/978-3-030-25275-5 .
[375] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash system, 2009. URL: http://www.bitcoin.org/bitcoin.pdf.
[376] D. Aggarwal, G. Brennen, T. Lee, M. Santha, M. Tomamichel, Quantum attacks on bitcoin, and how to protect against them, Ledger 3 (2018). doi: 10.5195/ledger.2018.127 .
[377] D. Sapaev, D. Bulychkov, F. Ablayev, A. Vasiliev, M. Ziatdinov, Quantum-assisted blockchain, 2018. arXiv:1802.06763 .
[378] O. Sattath, On the insecurity of quantum Bitcoin mining, International Journal of Information Security 19 (2020) 291–302. doi: 10.1007/s10207-020-00493-9 .
[379] L. Tessler, T. Byrnes, Bitcoin and quantum computing, 2018. arXiv:1711.04235 .
[380] L. Alessandretti, A. ElBahrawy, L. M. Aiello, A. Baronchelli, Anticipating cryptocurrency prices using machine learning, Complexity 2018 (2018) 1–16. doi: 10.1155/2018/8983590 .
[381] N. Gandal, H. Halaburda, Can We Predict the Winner in a Market with Network Effects? Competition in Cryptocurrency Market, Games 7 (2016). doi: 10.3390/g7030016 .
[382] T. Guo, A. Bifet, N. Antulov-Fantulin, Bitcoin volatility forecasting with a glimpse into buy and sell orders, 2018 IEEE International Conference on Data Mining (ICDM) (2018). doi: 10.1109/icdm.2018.00123 .
[383] H. Jang, J. Lee, An Empirical Study on Modeling and Prediction of Bitcoin Prices With Bayesian Neural Networks Based on Blockchain Information, IEEE Access 6 (2018) 5427–5437. doi: 10.1109/ACCESS.2017.2779181 .
[384] O. Sattarov, A. Muminov, C. W. Lee, H. K. Kang, R. Oh, J. Ahn, H. J. Oh, H. S. Jeon, Recommending cryptocurrency trading points with deep reinforcement learning approach, Applied Sciences 10 (2020). doi: 10.3390/app10041506 .
[385] D. Zhao, A. Rinaldo, C. Brookins, Cryptocurrency price prediction and trading strategies using support vector machines, 2019. arXiv:1911.11819 .
[386] T. R. Li, A. S. Chamrajnagar, X. R. Fong, N. R. Rizik, F. Fu, Sentiment-based prediction of alternative cryptocurrency price fluctuations using gradient boosting tree model, Frontiers in Physics 7 (2019) 98. doi: 10.3389/fphy.2019.00098 .
[387] W. Wei, Q. Zhang, L. Liu, Bitcoin transaction forecasting with deep network representation learning, 2020. arXiv:2007.07993 .
[388] A. H. A. Othman, S. Kassim, R. B. Rosman, N. H. B. Redzuan, Prediction accuracy improvement for Bitcoin market prices based on symmetric volatility information using artificial neural network approach, Journal of Revenue and Pricing Management 19 (2020) 314–330. URL: https://ideas.repec.org/a/pal/jorapm/v19y2020i5d10.1057_s41272-020-00229-3.html. doi: 10.1057/s41272-020-00229- .
[389] S. McNally, J. Roche, S. Caton, Predicting the price of bitcoin using machine learning, in: 2018 26th Euromicro International Conference on Parallel, Distributed and Network-based Processing (PDP), 2018, pp. 339–343. doi: 10.1109/PDP2018.2018.00060 .
[390] S. M. Raju, A. M. Tarif, Real-Time Prediction of BITCOIN Price using Machine Learning Techniques and Public Sentiment Analysis, 2020. arXiv:2006.14473 .
[391] Y. Hua, Bitcoin price prediction using ARIMA and LSTM, E3S Web Conf. 218 (2020) 01050. doi: 10.1051/e3sconf/202021801050 .