dc.description |
1. Agosto A., Cafferata A. Financial Bubbles: A Study of Co-Explosivity in the Cryptocurrency Market // Risks. — 2020. — Квіт. — Т. 8, No 2. — С. 34. — DOI: 10.3390/risks8020034.
2. Alqaralleh H., Abuhommous A. A., Alsaraireh A. Modelling and Forecasting the Volatility of Cryptocurrencies: A Comparison of Nonlinear GARCH-Type Models // International Journal of Financial Research. — 2020. — Лип. — Т. 11, No 4. — С. 346. — DOI: 10.5430/ijfr.v11n4p346.
3. An Exploration of Dynamical Systems and Chaos / J. H. Argyris [та ін.]. — Springer Berlin Heidelberg, 2015. — DOI: 10.1007/978-3-662-46042-9.
4. Analyzing time–frequency co-movements across gold and oil prices with BRICS stock markets: A VaR based on wavelet approach / W. Mensi [та ін.] // International Review of Economics & Finance. — 2018. — Бер. — Т. 54. — С. 74—102. — DOI: 10.1016/j.iref.2017.07.032.
5. Andersen J. V., Nowak A. Financial Markets as Interacting Individuals: Price Formation from Models of Complexity // An Introduction to Socio-Finance. — Springer Berlin Heidelberg, 2013. — С. 59—76. — DOI: 10.1007/978-3-642-41944-7_3.
6. Ardia D., Bluteau K., Rüede M. Regime changes in Bitcoin GARCH volatility dynamics // Finance Research Letters. — 2019. — Черв. — Т. 29. — С. 266—271. — DOI: 10.1016/j.frl.2018.08.009.
7. Are Bitcoin bubbles predictable? Combining a generalized Metcalfe’s Law and the Log-Periodic Power Law Singularity model / S. Wheatley [та ін.] // Royal Society Open Science. — 2019. — Черв. — Т. 6, No 6. — С. 180538. — DOI: 10.1098/rsos.180538.
8. Baaquie B. E. Quantum Finance. — Cambridge University Press, 11.2004. — DOI: 10.1017/cbo9780511617577.
9. Bariviera A. F. The inefficiency of Bitcoin revisited: A dynamic approach // Economics Letters. — 2017. — Груд. — Т. 161. — С. 1—4. — DOI: 10.1016/j.econlet.2017.09.013.
10. Barkoulas J., Travlos N. Chaos in an emerging capital market? The case of the Athens Stock Exchange // Applied Financial Economics. — 1998. — Черв. — Т. 8, No 3. — С. 231—243. — DOI: 10.1080/096031098332998.
11. Bastos J. A., Caiado J. Recurrence quantification analysis of global stock markets // Physica A: Statistical Mechanics and its Applications. — 2011. — Квіт. — Т. 390, No 7. — С. 1315—1325. — DOI: 10.1016/j.physa.2010.12.008.
12. Bentes S. R., Menezes R. Entropy: A new measure of stock market volatility? // Journal of Physics: Conference Series. — 2012. — Листоп. — Т. 394. — С. 012033. — DOI: 10.1088/1742-6596/394/1/012033.
13. Blank S. C. “Chaos” in futures markets? A nonlinear dynamical analysis // Journal of Futures Markets. — 1991. — Груд. — Т. 11, No 6. — С. 711—728. — DOI: 10.1002/fut.3990110606.
14. Boungou W., Yatié A. The impact of the Ukraine–Russia war on world stock market returns // Economics Letters. — 2022. — Черв. — Т. 215. — С. 110516. — DOI: 10.1016/j.econlet.2022.110516.
15. Bradley E., Kantz H. Nonlinear time-series analysis revisited // Chaos: An Interdisciplinary Journal of Nonlinear Science. — 2015. — Вер. — Т. 25, No 9. — С. 097610. — DOI: 10.1063/1.4917289.
16. Brock W. Distinguishing random and deterministic systems: Abridged version // Journal of Economic Theory. — 1986. — Жовт. — Т. 40, No 1. — С. 168—195. — DOI: 10.1016/0022-0531(86)90014-1.
17. Broomhead D., King G. P. Extracting qualitative dynamics from experimental data // Physica D: Nonlinear Phenomena. — 1986. — Черв. — Т. 20, No 2/3. — С. 217—236. — DOI: 10.1016/0167-2789(86)90031-x.
18. Can volume predict Bitcoin returns and volatility? A quantiles-based approach / M. Balcilar [та ін.] // Economic Modelling. — 2017. — Серп. — Т. 64. — С. 74—81. — DOI: 10.1016/j.econmod.2017.03.019.
19. Cao L. Practical method for determining the minimum embedding dimension of a scalar time series // Physica D: Nonlinear Phenomena. — 1997. — Груд. — Т. 110, No 1/2. — С. 43—50. — DOI: 10.1016/s0167-2789(97)00118-8.
20. Chaim P., Laurini M. P. Nonlinear dependence in cryptocurrency markets // The North American Journal of Economics and Finance. — 2019. — Квіт. — Т. 48. — С. 32—47. — DOI: 10.1016/j.najef.2019.01.015.
21. Charfeddine L., Benlagha N., Maouchi Y. Investigating the dynamic relationship between cryptocurrencies and conventional assets: Implications for financial investors // Economic Modelling. — 2020. — Лют. — Т. 85. — С. 198—217. — DOI: 10.1016/j.econmod.2019.05.016.
22. Chaum D. Blind Signatures for Untraceable Payments // Advances in Cryptology. — Springer US, 1983. — С. 199—203. — DOI: 10.1007/978-1-4757-0602-4_18.
23. Cheah E.-T., Fry J. Speculative bubbles in Bitcoin markets? An empirical investigation into the fundamental value of Bitcoin // Economics Letters. — 2015. — Трав. — Т. 130. — С. 32—36. — DOI: 10.1016/j.econlet.2015.02.029.
24. Classification of coupling patterns among spontaneous rhythms and ventilation in the sympathetic discharge of decerebrate cats / A. Porta [та ін.] // Biological Cybernetics. — 1996. — Серп. — Т. 75, No 2. — С. 163—172. — DOI: 10.1007/s004220050284.
25. Coco M. I., Dale R. Cross-recurrence quantification analysis of categorical and continuous time series: an R package // Frontiers in Psychology. — 2014. — Черв. — Т. 5. — DOI: 10.3389/fpsyg.2014.00510.
26. Competition of noise and collectivity in global cryptocurrency trading: Route to a self-contained market / S. Drożdż [та ін.] // Chaos: An Interdisciplinary Journal of Nonlinear Science. — 2020. — Лют. — Т. 30, No 2. — С. 023122. — DOI: 10.1063/1.5139634.
27. Complex systems and physics education / A. O. Bielinskyi [та ін.] // CEUR Workshop Proceedings / за ред. S. Semerikov, M. Shyshkina, A. Kiv. — 2022. — Т. 3085. — С. 56—80. — URL: https://ceur-ws.org/Vol-3085/paper17.pdf.
28. Cryptocurrencies and Price Prediction: A Survey / Y. Mezquita [та ін.] // Blockchain and Applications. — Springer International Publishing, 09.2021. — С. 339—346. — DOI: 10.1007/978-3-030-86162-9_34. — URL: https://doi.org/10.1007%2F978-3-030-86162-9_34.
29. Dai W. B-money. — 1998. — URL: http://www.weidai.com/bmoney.txt.
30. Derman E. My Life as a Quant: Reflections on Physics and Finance. — John Wiley & Sons, 2016.
31. Dionisio A., Menezes R., Mendes D. A. An econophysics approach to analyse uncertainty in financial markets: an application to the Portuguese stock market // The European Physical Journal B - Condensed Matter and Complex Systems. — 2006. — Бер. — Т. 50, No 1/2. — С. 161—164. — DOI: 10.1140/epjb/e2006-00113-2.
32. Distinguishing dynamics using recurrence-time statistics / E. J. Ngamga [та ін.] // Phys. Rev. E. — 2012. — Лют. — Т. 85, вип. 2. — С. 026217. — DOI: 10.1103/PhysRevE.85.026217.
33. Dwork C., Naor M. Pricing via Processing or Combatting Junk Mail // Advances in Cryptology — CRYPTO’ 92. — Springer Berlin Heidelberg. — С. 139—147. — DOI: 10.1007/3-540-48071-4_10.
34. Eckmann J.-P., Kamphorst S. O., Ruelle D. Recurrence Plots of Dynamical Systems // Europhysics Letters (EPL). — 1987. — Листоп. — Т. 4, No 9. — С. 973—977. — DOI: 10.1209/0295-5075/4/9/004.
35. Econophysics and Data Driven Modelling of Market Dynamics / за ред. F. Abergel [та ін.]. — Springer International Publishing, 2015. — DOI: 10.1007/978-3-319-08473-2.
36. Econophysics of cryptocurrency crashes: A systematic review / A. O. Bielinskyi [та ін.] // CEUR Workshop Proceedings / за ред. A. Kiv, V. Soloviev, S. Semerikov. — 2021. — Т. 3048. — С. 31—133. — URL: https://ceur-ws.org/Vol-3048/paper03.pdf.
37. Estimating coupling directions in the cardiorespiratory system using recurrence properties / N. Marwan [та ін.] // Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. — 2013. — Серп. — Т. 371, No 1997. — С. 20110624. — DOI: 10.1098/rsta.2011.0624.
38. Fast Computation of Recurrences in Long Time Series / T. Rawald [та ін.] // Springer Proceedings in Mathematics & Statistics. — Springer International Publishing, 2014. — С. 17—29. — DOI: 10.1007/978-3-319-09531-8_2.
39. Fat tails, VaR and subadditivity / J. Danı́elsson [та ін.] // Journal of Econometrics. — 2013. — Лют. — Т. 172, No 2. — С. 283—291. — DOI: 10.1016/j.jeconom.2012.08.011.
40. Finance Y. List of Cryptocurrencies. — 2022. — URL: https://finance.yahoo.com/crypto/.
41. Fraser A. M., Swinney H. L. Independent coordinates for strange attractors from mutual information // Physical Review A. — 1986. — Лют. — Т. 33, No 2. — С. 1134—1140. — DOI: 10.1103/physreva.33.1134.
42. Front Matter // Econophysics and Sociophysics. — Wiley-VCH Verlag GmbH & Co. KGaA. — С. I—XXVI. — DOI: 10.1002/9783527610006.fmatter.
43. Fry J. Booms, busts and heavy-tails: The story of Bitcoin and cryptocurrency markets? // Economics Letters. — 2018. — Жовт. — Т. 171. — С. 225—229. — DOI: 10.1016/j.econlet.2018.08.008.
44. GARCH Modelling of Cryptocurrencies / J. Chu [та ін.] // Journal of Risk and Financial Management. — 2017. — Жовт. — Т. 10, No 4. — С. 17. — DOI: 10.3390/jrfm10040017.
45. Garnier J., Solna K. Chaos and order in the bitcoin market // Physica A: Statistical Mechanics and its Applications. — 2019. — Черв. — Т. 524. — С. 708—721. — DOI: 10.1016/j.physa.2019.04.164.
46. Geometry from a Time Series / N. H. Packard [та ін.] // Physical Review Letters. — 1980. — Вер. — Т. 45, No 9. — С. 712—716. — DOI: 10.1103/physrevlett.45.712.
47. Gerlach J. C., Demos G., Sornette D. Dissection of Bitcoin’s multiscale bubble history from January 2012 to February 2018 // Royal Society Open Science. — 2019. — Лип. — Т. 6, No 7. — С. 180643. — DOI: 10.1098/rsos.180643.
48. Gisler M., Sornette D. Exuberant Innovations: The Apollo Program // Society. — 2008. — Листоп. — Т. 46, No 1. — С. 55—68. — DOI: 10.1007/s12115-008-9163-8.
49. Goodell J. W., Goutte S. Co-movement of COVID-19 and Bitcoin: Evidence from wavelet coherence analysis // Finance Research Letters. — 2021. — Січ. — Т. 38. — С. 101625. — DOI: 10.1016/j.frl.2020.101625.
50. Haber S., Stornetta W. S. How to Time-Stamp a Digital Document // Advances in Cryptology-CRYPT0’ 90. — Springer Berlin Heidelberg. — С. 437—455. — DOI: 10.1007/3-540-38424-3_32.
51. Hegger R., Kantz H., Schreiber T. Practical implementation of nonlinear time series methods: The TISEAN package // Chaos: An Interdisciplinary Journal of Nonlinear Science. — 1999. — Черв. — Т. 9, No 2. — С. 413—435. — DOI: 10.1063/1.166424.
52. Hirata Y., Horai S., Aihara K. Reproduction of distance matrices and original time series from recurrence plots and their applications // The European Physical Journal Special Topics. — 2008. — Жовт. — Т. 164, No 1. — С. 13—22. — DOI: 10.1140/epjst/e2008-00830-8.
53. Huber T. A., Sornette D. Boom, Bust, and Bitcoin: Bitcoin-Bubbles as Innovation Accelerators // Journal of Economic Issues. — 2022. — Січ. — Т. 56, No 1. — С. 113—136. — DOI: 10.1080/00213624.2022.2020023.
54. Huber T. A., Sornette D. Can there be a physics of financial markets? Methodological reflections on econophysics // The European Physical Journal Special Topics. — 2016. — Груд. — Т. 225, No 17/18. — С. 3187—3210. — DOI: 10.1140/epjst/e2016-60158-5.
55. Infering indirect coupling by means of recurrences / Y. Zou [та ін.] // International Journal of Bifurcation and Chaos. — 2011. — Квіт. — Т. 21, No 04. — С. 1099—1111. — DOI: 10.1142/s0218127411029033.
56. Information Transmission Between Cryptocurrencies: Does Bitcoin Rule the Cryptocurrency World? / P. Bação [та ін.] // Scientific Annals of Economics and Business. — 2018. — Черв. — Т. 65, No 2. — С. 97—117. — DOI: 10.2478/saeb-2018-0013.
57. Jakobsson M., Juels A. Proofs of Work and Bread Pudding Protocols(Extended Abstract) // Secure Information Networks. — Springer US, 1999. — С. 258—272. — DOI: 10.1007/978-0-387-35568-9_18.
58. Jang H., Lee J. An Empirical Study on Modeling and Prediction of Bitcoin Prices With Bayesian Neural Networks Based on Blockchain Information // IEEE Access. — 2018. — Т. 6. — С. 5427—5437. — DOI: 10.1109/access.2017.2779181.
59. Jiang Y., Nie H., Ruan W. Time-varying long-term memory in Bitcoin market // Finance Research Letters. — 2018. — Черв. — Т. 25. — С. 280—284. — DOI: 10.1016/j.frl.2017.12.009.
60. Kadji H. G. E. Effects of a locally injected signal on phase synchronization in a network of self-excited cells // The European Physical Journal B. — 2013. — Квіт. — Т. 86, No 4. — DOI: 10.1140/epjb/e2013-31087-3.
61. Kantz H., Schreiber T. Nonlinear Time Series Analysis. — Cambridge University Press, 11.2003. — DOI: 10.1017/cbo9780511755798.
62. Kennel M. B., Brown R., Abarbanel H. D. I. Determining embedding dimension for phase-space reconstruction using a geometrical construction // Physical Review A. — 1992. — Бер. — Т. 45, No 6. — С. 3403—3411. — DOI: 10.1103/physreva.45.3403.
63. Khuntia S., Pattanayak J. Adaptive long memory in volatility of intraday bitcoin returns and the impact of trading volume // Finance Research Letters. — 2020. — Січ. — Т. 32. — С. 101077. — DOI: 10.1016/j.frl.2018.12.025.
64. Khuntia S., Pattanayak J. Adaptive market hypothesis and evolving predictability of bitcoin // Economics Letters. — 2018. — Черв. — Т. 167. — С. 26—28. — DOI: 10.1016/j.econlet.2018.03.005.
65. Lahmiri S., Bekiros S. Chaos, randomness and multi-fractality in Bitcoin market // Chaos, Solitons & Fractals. — 2018. — Січ. — Т. 106. — С. 28—34. — DOI: 10.1016/j.chaos.2017.11.005.
66. Lahmiri S., Bekiros S. Chaos, randomness and multi-fractality in Bitcoin market // Chaos, Solitons & Fractals. — 2018. — Січ. — Т. 106. — С. 28—34. — DOI: 10.1016/j.chaos.2017.11.005.
67. Lahmiri S., Bekiros S., Salvi A. Long-range memory, distributional variation and randomness of bitcoin volatility // Chaos, Solitons & Fractals. — 2018. — Лют. — Т. 107. — С. 43—48. — DOI: 10.1016/j.chaos.2017.12.018.
68. Large complex data: divide and recombine (D&R) with RHIPE / S. Guha [та ін.] // Stat. — 2012. — Вер. — Т. 1, No 1. — С. 53—67. — DOI: 10.1002/sta4.7.
69. Lindsay D. H., Campbell A. A Chaos Approach To Bankruptcy Prediction // Journal of Applied Business Research (JABR). — 2011. — Вер. — Т. 12, No 4. — С. 1. — DOI: 10.19030/jabr.v12i4.5779.
70. Lorenz E. N. Deterministic Nonperiodic Flow // Journal of the Atmospheric Sciences. — 1963. — Бер. — Т. 20, No 2. — С. 130—141. — DOI: 10.1175/1520-0469(1963)020<0130:dnf>2.0.co;2.
71. Maciel L. Cryptocurrencies value-at-risk and expected shortfall: Do regime-switching volatility models improve forecasting? // International Journal of Finance & Economics. — 2020. — Серп. — Т. 26, No 3. — С. 4840—4855. — DOI: 10.1002/ijfe.2043.
72. Macro-Econometric Models // Econometrica. — 1971. — Т. 39, No 4. — С. 168—172. — ISSN 00129682, 14680262. — URL: http://www.jstor.org/stable/1912420 (дата зверн. 28.11.2022).
73. Mandelbrot B. How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension // Science. — 1967. — Трав. — Т. 156, No 3775. — С. 636—638. — DOI: 10.1126/science.156.3775.636.
74. Mandelbrot B. Paretian Distributions and Income Maximization // The Quarterly Journal of Economics. — 1962. — Лют. — Т. 76, No 1. — С. 57. — DOI: 10.2307/1891131.
75. Mandelbrot B. Stable Paretian Random Functions and the Multiplicative Variation of Income // Econometrica. — 1961. — Жовт. — Т. 29, No 4. — С. 517. — DOI: 10.2307/1911802.
76. Mandelbrot B. The Pareto-Levy Law and the Distribution of Income // International Economic Review. — 1960. — Трав. — Т. 1, No 2. — С. 79. — DOI: 10.2307/2525289.
77. Mandelbrot B. The Stable Paretian Income Distribution when the Apparent Exponent is Near Two // International Economic Review. — 1963. — Січ. — Т. 4, No 1. — С. 111. — DOI: 10.2307/2525463.
78. Mandelbrot B. The Variation of Certain Speculative Prices // The Journal of Business. — 1963. — Січ. — Т. 36, No 4. — С. 394. — DOI: 10.1086/294632.
79. Mandelbrot B. The Variation of Some Other Speculative Prices // The Journal of Business. — 1967. — Січ. — Т. 40, No 4. — С. 393. — DOI: 10.1086/295006.
80. Mandelbrot B. B. New methods in statistical economics // Fractals and Scaling in Finance. — Springer New York, 1997. — С. 79—104. — DOI: 10.1007/978-1-4757-2763-0_3.
81. Mantegna R. N., Stanley H. E. Introduction to Econophysics. — Cambridge University Press, 11.1999. — DOI: 10.1017/cbo9780511755767.
82. Mantegna R. N. Presentation of the English translation of Ettore Majorana’s paper: The value of statistical laws in physics and social sciences // Quantitative Finance. — 2005. — Т. 5, No 2. — С. 133—140. — DOI: 10.1080/14697680500148174.
83. Marwan N. A historical review of recurrence plots // The European Physical Journal Special Topics. — 2008. — Жовт. — Т. 164, No 1. — С. 3—12. — DOI: 10.1140/epjst/e2008-00829-1.
84. Marwan N. Commandline Recurrence Plots. — 2016. — URL: http://tocsy.pik-potsdam.de/commandline-rp.php.
85. Marwan N. Cross recurrence plot toolbox 5.20 (R30.5). — 2016. — URL: http://tocsy.pik-potsdam.de/CRPtoolbox/.
86. Marwan N. How to avoid potential pitfalls in recurrence plot based data analysis // International Journal of Bifurcation and Chaos. — 2011. — Квіт. — Т. 21, No 04. — С. 1003—1017. — DOI: 10.1142/s0218127411029008.
87. Marwan N., Kurths J. Line structures in recurrence plots // Physics Letters A. — 2005. — Бер. — Т. 336, No 4/5. — С. 349—357. — DOI: 10.1016/j.physleta.2004.12.056.
88. Marwan N., Kurths J. Nonlinear analysis of bivariate data with cross recurrence plots // Physics Letters A. — 2002. — Вер. — Т. 302, No 5/6. — С. 299—307. — DOI: 10.1016/s0375-9601(02)01170-2.
89. Marwan N., Schinkel S., Kurths J. Recurrence plots 25 years later —Gaining confidence in dynamical transitions // EPL (Europhysics Letters). — 2013. — Січ. — Т. 101, No 2. — С. 20007. — DOI: 10.1209/0295-5075/101/20007.
90. Maslov V. P., Nazaikinskii V. E. Mathematics underlying the 2008 financial crisis, and a possible remedy. — 2008. — URL: https://arxiv.org/abs/0811.4678.
91. Massively Parallel Analysis of Similarity Matrices on Heterogeneous Hardware / T. Rawald [та ін.] //. — С. 56—62. — URL: http://ceur-ws.org/Vol-1330/#paper-11.
92. McFarland D. J., Sarnacki W. A., Wolpaw J. R. Electroencephalographic (EEG) control of three-dimensional movement // Journal of Neural Engineering. — 2010. — Трав. — Т. 7, No 3. — С. 036007. — DOI: 10.1088/1741-2560/7/3/036007.
93. McKenzie M. D. Chaotic behavior in national stock market indices // Global Finance Journal. — 2001. — Бер. — Т. 12, No 1. — С. 35—53. — DOI: 10.1016/s1044-0283(01)00024-2.
94. Medvinsky A. B., Rusakov A. V., Nurieva N. I. Integer-based modeling of population dynamics: Competition between attractors limits predictability // Ecological Complexity. — 2013. — Черв. — Т. 14. — С. 108—116. — DOI: 10.1016/j.ecocom.2012.05.005.
95. Moloney K., Raghavendra S. Examining the dynamical transition in the Dow Jones Industrial Index from Bull to Bear market using Recurrence Quantification Analysis. — 2016. — URL: https://aran.library.nuigalway.ie/bitstream/handle/10379/3063/Examining%20the%20dynamical%20transition%20in%20the%20Dow.pdf?sequence=1&isAllowed=y.
96. Multiscale characteristics of the emerging global cryptocurrency market / M. Wa ̨torek [та ін.] // Physics Reports. — 2021. — Бер. — Т. 901. — С. 1—82. — DOI: 10.1016/j.physrep.2020.10.005.
97. Multivariate recurrence plots / M. C. Romano [та ін.] // Physics Letters A. — 2004. — Вер. — Т. 330, No 3/4. — С. 214—223. — DOI: 10.1016/j.physleta.2004.07.066.
98. Nadarajah S., Zhang B., Chan S. Estimation methods for expected shortfall // Quantitative Finance. — 2013. — Лип. — Т. 14, No 2. — С. 271—291. — DOI: 10.1080/14697688.2013.816767.
99. Nakamoto S. Bitcoin Open Source Implementation of P2P Currency. — 2009. — URL: https://satoshi.nakamotoinstitute.org/posts/p2pfoundation/2/.
100. Nakamoto S. Bitcoin: A Peer-to-Peer Electronic Cash System. — 2008. — URL: https://bitcoin.org/bitcoin.pdf.
101. Narayanan A., Clark J. Bitcoin’s Academic Pedigree // Queue. — 2017. — Серп. — Т. 15, No 4. — С. 20—49. — DOI: 10.1145/3134434.3136559.
102. Ormerod P. Ten years after “Worrying trends in econophysics”: developments and current challenges // The European Physical Journal Special Topics. — 2016. — Груд. — Т. 225, No 17/18. — С. 3281—3291. — DOI: 10.1140/epjst/e2016-60126-7.
103. Ott E. Chaos in Dynamical Systems. — Cambridge University Press, 08.2002. — DOI: 10.1017/cbo9780511803260.
104. Pal N., Samanta S., Chattopadhyay J. Revisited Hastings and Powell model with omnivory and predator switching // Chaos, Solitons & Fractals. — 2014. — Вер. — Т. 66. — С. 58—73. — DOI: 10.1016/j.chaos.2014.05.003.
105. Panja P., Mondal S. K., Jana D. K. Effects of toxicants on Phytoplankton-Zooplankton-Fish dynamics and harvesting // Chaos, Solitons & Fractals. — 2017. — Листоп. — Т. 104. — С. 389—399. — DOI: 10.1016/j.chaos.2017.08.036.
106. Peacock-Lopez E. Ecological Model of competitive species and the role of intraspecies interaction in the formation of spatio-temporal patterns // WSEAS Transactions on Biology and Biomedicine. — 2004. — Січ. — Т. 1. — С. 76—81.
107. Pele D., Mazurencu-Marinescu-Pele M. Using High-Frequency Entropy to Forecast Bitcoin’s Daily Value at Risk // Entropy. — 2019. — Січ. — Т. 21, No 2. — С. 102. — DOI: 10.3390/e21020102.
108. Peters E. E. Fractal Market Analysis: Applying Chaos Theory to Investment and Economics. — Wiley, 1994. — (Wiley Finance). — ISBN 978-0-471-58524-4.
109. Phillip A., Chan J. S., Peiris S. A new look at Cryptocurrencies // Economics Letters. — 2018. — Лют. — Т. 163. — С. 6—9. — DOI: 10.1016/j.econlet.2017.11.020.
110. Pilkington M. Bitcoin through the lenses of complexity theory. — DOI: 10.4337/9781784719005.00035.
111. Piskun O., Piskun S. Recurrence Quantification Analysis of Financial Market Crashes and Crises. — 2011. — URL: https://arxiv.org/abs/1107.5420.
112. Poincaré H. Sur le problème des trois corps et les équations de la dynamique // Acta mathematica. — 1890. — Т. 13. — С. 1—270.
113. Ponomarenko V. I., Prokhorov M. D. Extracting information masked by the chaotic signal of a time-delay system // Phys. Rev. E. — 2002. — Серп. — Т. 66, вип. 2. — С. 026215. — DOI: 10.1103/PhysRevE.66.026215.
114. Predictability of multifractal analysis of Hang Seng stock index in Hong Kong / X. Sun [та ін.] // Physica A: Statistical Mechanics and its Applications. — 2001. — Груд. — Т. 301, No 1—4. — С. 473—482. — DOI: 10.1016/s0378-4371(01)00433-2.
115. Price Behavior // Econometrica. — 1970. — Т. 38, No 4. — С. 122—124. — ISSN 00129682, 14680262. — URL: http://www.jstor.org/stable/1911596 (дата зверн. 28.11.2022).
116. Rajković M. Extracting meaningful information from financial data // Physica A: Statistical Mechanics and its Applications. — 2000. — Груд. — Т. 287, No 3/4. — С. 383—395. — DOI: 10.1016/s0378-4371(00)00377-0.
117. Rawald T. Scalable and Efficient Analysis of Large High-Dimensional Data Sets in the Context of Recurrence Analysis : PhD dissertation / Rawald Tobias. — Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2018. — С. 299. — DOI: 10.18452/18797.
118. Rawald T., Sips M., Marwan N. PyRQA—Conducting recurrence quantification analysis on very long time series efficiently // Computers & Geosciences. — 2017. — Лип. — Т. 104. — С. 101—108. — DOI: 10.1016/j.cageo.2016.11.016.
119. Recurrence plots for the analysis of complex systems / N. Marwan [та ін.] // Physics Reports. — 2007. — Січ. — Т. 438, No 5/6. — С. 237—329. — DOI: 10.1016/j.physrep.2006.11.001.
120. Recurrence Quantification Analysis / за ред. C. L. Webber, N. Marwan. — Springer International Publishing, 2015. — DOI: 10.1007/978-3-319-07155-8.
121. Robinson G., Thiel M. Recurrences determine the dynamics // Chaos: An Interdisciplinary Journal of Nonlinear Science. — 2009. — Черв. — Т. 19, No 2. — С. 023104. — DOI: 10.1063/1.3117151.
122. Saptsin V., Soloviev V. Relativistic quantum econophysics - new paradigms in complex systems modelling. — 2009. — URL: https://arxiv.org/abs/0907.1142.
123. Sasikumar A., Kamaiah B. A Complex Dynamical Analysis of the Indian Stock Market // Economics Research International. — 2014. — Груд. — Т. 2014. — С. 1—6. — DOI: 10.1155/2014/807580.
124. Schaden M. Quantum finance // Physica A: Statistical Mechanics and its Applications. — 2002. — Груд. — Т. 316, No 1—4. — С. 511—538. — DOI: 10.1016/s0378-4371(02)01200-1.
125. Scheinkman J. A., LeBaron B. Nonlinear Dynamics and Stock Returns // The Journal of Business. — 1989. — Січ. — Т. 62, No 3. — С. 311. — DOI: 10.1086/296465.
126. Schinckus C. A Methodological Call for a Quantum Econophysics // Quantum Interaction. — Springer Berlin Heidelberg, 2014. — С. 308—316. — DOI: 10.1007/978-3-642-54943-4_28.
127. Serletis A., Gogas P. Chaos in East European black market exchange rates // Research in Economics. — 1997. — Груд. — Т. 51, No 4. — С. 359—385. — DOI: 10.1006/reec.1997.0050.
128. Soloviev V., Belinskij A. Methods of nonlinear dynamics and the construction of cryptocurrency crisis phenomena precursors // CEUR Workshop Proceedings / за ред. V. Ermolayev [та ін.]. — 2018. — Т. 2104. — С. 116—127. — URL: https://ceur-ws.org/Vol-2104/paper_175.pdf.
129. Soloviev V., Saptsin V. Heisenberg uncertainty principle and economic analogues of basic physical quantities. — 2011. — URL: https://arxiv.org/abs/1111.5289.
130. Soloviev V. N., Belinskiy A. Complex Systems Theory and Crashes of Cryptocurrency Market // Communications in Computer and Information Science / за ред. V. Yakovyna [та ін.]. — 2019. — Т. 1007. — С. 276—297. — DOI: 10.1007/978-3-030-13929-2_14.
131. Sornette D. Nurturing breakthroughs: lessons from complexity theory // Journal of Economic Interaction and Coordination. — 2008. — Квіт. — Т. 3, No 2. — С. 165—181. — DOI: 10.1007/s11403-008-0040-8.
132. Sornette D. Fundamentals of Financial Markets // Why Stock Markets Crash. — Princeton University Press, 03.2017. — DOI: 10.23943/princeton/9780691175959.003.0002.
133. Sornette D. Physics and financial economics (1776–2014): puzzles, Ising and agent-based models // Reports on Progress in Physics. — 2014. — Трав. — Т. 77, No 6. — С. 062001. — DOI: 10.1088/0034-4885/77/6/062001.
134. Sornette D., Cauwels P. Financial Bubbles: Mechanisms and Diagnostics // Review of Behavioral Economics. — 2015. — Жовт. — Т. 2, No 3. — С. 279—305. — DOI: 10.1561/105.00000035.
135. Stone J. E., Gohara D., Shi G. OpenCL: A Parallel Programming Standard for Heterogeneous Computing Systems // Computing in Science & Engineering. — 2010. — Трав. — Т. 12, No 3. — С. 66—73. — DOI: 10.1109/mcse.2010.69.
136. Symitsi E., Chalvatzis K. J. Return, volatility and shock spillovers of Bitcoin with energy and technology companies // Economics Letters. — 2018. — Вер. — Т. 170. — С. 127—130. — DOI: 10.1016/j.econlet.2018.06.012.
137. Szabo N. Bit gold. — 2008. — URL: https://unenumerated.blogspot.com/2005/12/bit-gold.html.
138. Takaishi T. Statistical properties and multifractality of Bitcoin // Physica A: Statistical Mechanics and its Applications. — 2018. — Вер. — Т. 506. — С. 507—519. — DOI: 10.1016/j.physa.2018.04.046.
139. Takens F. Detecting strange attractors in turbulence // Lecture Notes in Mathematics. — Springer Berlin Heidelberg, 1981. — С. 366—381. — DOI: 10.1007/bfb0091924.
140. Testing for asymmetric nonlinear short- and long-run relationships between bitcoin, aggregate commodity and gold prices / E. Bouri [та ін.] // Resources Policy. — 2018. — Серп. — Т. 57. — С. 224—235. — DOI: 10.1016/j.resourpol.2018.03.008.
141. The behaviour of some UK equity indices: An application of Hurst and BDS tests / K. K. Opong [та ін.] // Journal of Empirical Finance. — 1999. — Вер. — Т. 6, No 3. — С. 267—282. — DOI: 10.1016/s0927-5398(99)00004-3.
142. Theiler J. Estimating fractal dimension // Journal of the Optical Society of America A. — 1990. — Черв. — Т. 7, No 6. — С. 1055. — DOI: 10.1364/josaa.7.001055.
143. Thurner S., Klimek P., Hanel R. Introduction to the Theory of Complex Systems. — Oxford University Press, 11.2018. — DOI: 10.1093/oso/9780198821939.001.0001.
144. Unified functional network and nonlinear time series analysis for complex systems science: The pyunicorn package / J. F. Donges [та ін.] // Chaos: An Interdisciplinary Journal of Nonlinear Science. — 2015. — Листоп. — Т. 25, No 11. — С. 113101. — DOI: 10.1063/1.4934554.
145. Urquhart A. The inefficiency of Bitcoin // Economics Letters. — 2016. — Т. 148. — С. 80—82. — ISSN 0165-1765. — DOI: 10.1016/j.econlet.2016.09.019.
146. Walther T., Klein T., Bouri E. Exogenous drivers of Bitcoin and Cryptocurrency volatility – A mixed data sampling approach to forecasting // Journal of International Financial Markets, Institutions and Money. — 2019. — Т. 63. — С. 101133. — ISSN 1042-4431. — DOI: https://doi.org/10.1016/j.intfin.2019.101133.
147. Webber C. L., Zbilut J. P. Dynamical assessment of physiological systems and states using recurrence plot strategies // Journal of Applied Physi99ology. — 1994. — Лют. — Т. 76, No 2. — С. 965—973. — DOI: 10.1152/jappl.1994.76.2.965.
148. Al-Yahyaee K. H., Mensi W., Yoon S.-M. Efficiency, multifractality, and the long-memory property of the Bitcoin market: A comparative analysis with stock, currency, and gold markets // Finance Research Letters. — 2018. — Груд. — Т. 27. — С. 228—234. — DOI: 10.1016/j.frl.2018.03.017.
149. Yin T., Wang Y. Nonlinear analysis and prediction of bitcoin return’s volatility // E+M Ekonomie a Management. — 2022. — Черв. — Т. 25, No 2. — С. 102—117. — DOI: 10.15240/tul/001/2022-2-007.
150. Zbilut J. P., Giuliani A., Webber C. L. Detecting deterministic signals in exceptionally noisy environments using cross-recurrence quantification // Physics Letters A. — 1998. — Вер. — Т. 246, No 1/2. — С. 122—128. — DOI: 10.1016/s0375-9601(98)00457-5.
151. Zbilut J. P., Webber C. L. Embeddings and delays as derived from quantification of recurrence plots // Physics Letters A. — 1992. — Груд. — Т. 171, No 3/4. — С. 199—203. — DOI: 10.1016/0375-9601(92)90426-m.
152. Zbilut J. P., Webber C. L. Recurrence quantification analysis: Introduction and historical context // International Journal of Bifurcation and Chaos. — 2007. — Жовт. — Т. 17, No 10. — С. 3477—3481. — DOI: 10.1142/s0218127407019238. |
uk |