Description:
Adeleke, R., Nwangburuka, C. and Oboirien, B. 2017. Origins, roles and fate of organic acids in soils: a review.
South African Journal of Botany 108: 393–406. https://doi.
org/10.1016/j.sajb.2016.09.002.
Baghaie, A.H. and Aghili, F. 2019. Investigation of heavy metals concentration in soil around a Pb Zn mine and ecological risk assessment. Environmental Health Engineering and Management Journal 6(3): 151–156. https://doi.
org/10.15171/EHEM.2019.17.
Bardule, A., Laivins, M., Lazdins, A., Bardulis, A. and Zadina, M. 2017. Changes in the soil organic O layer composition after surface fire in the dry-mesic pine forest in Rucava
(Latvia). Baltic Forestry 23(2): 490–497.
Bashkin, V.N. and Howarth, R.W. 2003. Modern Biogeochemistry. Kluwer Academic Publishers, New York–Boston–
Dordrecht–London–Moscow, 567 pp.
Bielyk, Yu., Savosko, V., Lykholat, Yu., Heilmeier, H. and
Grygoryuk, I. 2020. Macronutrients and heavy metals contents in the leaves of trees from the devastated
lands at Kryvyi Rih District (Central Ukraine). E3S Web
of Conferences 166: 01011. https://doi.org/10.1051/e3sconf/202016601011.
Burns, S.L., Brukas, V., Krott, M. and Giessen, L. 2017.
Trends in European forest policy research. Forest Policy
and Economics 83: 179–180. https://doi.org/10.1016/j.forpol.2017.08.013.
Demkova, L., Jezny, T. and Bobuľska, L. 2017. Assessment of
soil heavy metal pollution in a former mining area – before and
after the end of mining activities. Soil and Water Research 12:
229–236. https://doi.org/10.17221/107/2016-SWR.
Dolezalova Weissmannova, H. and Pavlovsky, J. 2017. Indices
of soil contamination by heavy metals – methodology of
calculation for pollution assessment (minireview). Environmental Monitoring and Assessment 189: 616. https://doi.
org/10.1007/s10661-017-6340-5.
Ehrenfeld, J., Ravit, B. and Elgersma, K.J. 2005. Feedback in
the plant-soil system. Annual Review of Environment and
Resources 30: 75–115. https://doi.org/10.1146/annurev.energy.30.050504.144212.
EPA. 2007. SW-846 Test method 7000B: Flame atomic absorption spectrophotometry. Revision 2. A part of ‘The Test
Methods for Evaluating Solid Waste: Physical / Chemical
Methods Compendium, EPA SW-846’. U.S Environmental
Protection Agency. U.S. Government Print Office, Washington, 23 pp. Available online at: https://www.epa.gov/
sites/default/files/2015-12/documents/7000b.pdf.
Faucon, M.P., Le Stradic, S., Boisson, S., Ilunga, E., Seleck, M., Lange, B., Delhaye, G., NgoyShutcha, M., Pourret, O., Meerts, P. and Mahy, G. 2016. Implication of
plant-soil relationships for conservation and restoration of
copper-cobalt ecosystems. Plant Soil 403: 153–165. https://
doi.org/10.1007/s11104-015-2745-5.
Gryshko, V.M. 2012. Vmist riznykh za rukhomistiu form tsynku v gruntakh urbanizovanykh terytorii [The maintenance
of different on mobility zinc forms in the urbanized areas soil]. Біологічні системи/Biological Systems 4(2):
149–153 (in Ukrainian with English abstract). Available
online at: http://ibhb.chnu.edu.ua/uploads/files/vb/BS_T4_
V2_2012/4_C_149-153_Gryshko.pdf.
Gryshko, V.M., Syshchykov, D.V., Piskova, O.M., Danylchuk, O.V. and Mashtaler, N.V. 2012. Vazhki metaly: nadkhodzhennia v grunty, translokatsiia u roslynakh ta ekologichna bezpeka [Heavy metals: entering to soil, translocation
in plants and ecological danger]. ‘Donbas’ Publishers, Donetsk, 304 pp. (in Ukrainian with English abstract).
Hakanson, L. 1980. An ecological risk index for aquatic pollution
control a sedimentological approach. Water Research 14(8):
975–1001. https://doi.org/10.1016/0043-1354(80)90143-8.
Holtra, A. and Zamorska-Wojdyła, D. 2020. The pollution indices of trace elements in soils and plants close to the copper
and zinc smelting works in Poland’s Lower Silesia. Environmental Science and Pollution Research 27: 16086– 16099.
https://doi.org/10.1007/s11356-020-08072-0.
ISO. 2015. Soil quality – Pretreatment of samples for physico-chemical analysis. ISO Standard No 11464-2015. International Organization for Standardization. Available at:
https://www.iso.org/standard/37718.html.
ISO. 2018. Soil quality – Sampling, Part 203: Investigation of potentially contaminated sites. ISO Standard No ISO 18400-
203:2018. International Organization for Standardization.
Retrieved from https://www.iso.org/standard/65226.html.
IUSS Working Group WRB. 2015. World Reference Base for Soil
Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil
maps. World Soil Resources Reports No 106. FAO, Rome,
203 pp. Available online at: https://www.fao.org/3/i3794en/
I3794en.pdf.
Jogiste, K., Frelich, L.E., Vodde, F., Kangur, A., Metslaid, M.
and Stanturf, J.A. 2020. Natural disturbance dynamics
analysis for ecosystem-based management – FORDISMAN.
Forests 11(6): 663. https://doi.org/10.3390/f11060663.
Kabata-Pendias, A. and Mukherjee, A.B. 2007. Trace elements from soil to human. Springer, Berlin–Heidelberg,
550 pp. https://doi.org/10.1007/978-3-540-32714-1.
Kasiuliene, A., Paulauskas, V., Marozas, V. and Waara, S.
2019. Accumulation of heavy metals in forest dwarf shrubs
and dominant mosses as bioindicators of atmospheric pollution. Journal of Elementology 24(3): 1079–1090. https://
doi.org/10.5601/jelem.2019.24.1.1744.
Kowalska, J., Mazurek, R., Gąsiorek, M., Setlak, M., Zaleski, T. and Waroszewski, J. 2016. Soil pollution indices
conditioned by medieval metallurgical activity – a case
study from Krakow (Poland). Environmental Pollution 218:
1023–1036. https://doi.org/10.1016/j.envpol.2016.08.053.
Kowalska, J.B., Mazurek, R., Gąsiorek, M. and Zaleski, T.
2018. Pollution indices as useful tools for the comprehensive
evaluation of the degree of soil contamination – a review.
Environmental Geochemistry and Health 40: 2395– 2420.
https://doi.org/10.1007/s10653-018-0106-z.
Li, W., Cui, L., Sun, B., Zhao, X., Gao, C., Zhang, Y.,
Zhang, M., Pan, X., Lei, Y. and Ma, W. 2017. Distribution patterns of plant communities and their associations
with environmental soil factors on the eastern shore of
Lake Taihu, China. Ecosystem Health and Sustainability 3:
1385004. https://doi.org/10.1080/20964129.2017.1385004.
Loska, K., Wiechulab, D. and Korus, I. 2004. Metal contamination of farming soils affected by industry. Environment
International 30: 159–165. https://doi.org/10.1016/S0160-
4120(03)00157-0.
Mazurek, M., Kowalska, J., Gasiorek, M., Zadrozny, P.,
Jozefowska, A., Zaleski, T., Kepka, W., Tymczuk, M.
and Orłowska, K. 2017. Assessment of heavy metals
contamination in surface layers of Roztocze National Park
forest soils (SE Poland) by indices of pollution. Chemosphere 168: 839–850. https://doi.org/10.1016/j.chemosphere.2016.10.126.
McDonald, J.H. 2014. Handbook of Biological Statistics. 3rd ed.
Sparky House Publishing, Baltimore, Maryland, 305 pp.
Available online at: https://www.biostathandbook.com.
Muller, G. 1969. Index of geo-accumulation in sediments of the
Rhine River. Geojournal 2: 108–118.
Naik, S.B., Mohapatra, S. and Chauhan, V. 2020. Influence of
forest community and soil depth on soil physio-chemical properties of Col. Sher Jung National Park, Himachal Pradesh. Journal of Pharmacognosy and Phytochemistry 9(2): 2351– 2354.
https://doi.org/10.22271/phyto.2020.v9.i2am.11222.
O’Neill, K.P., Amacher, M.C. and Perry, C.H. 2005. Soils as
an indicator of forest health: a guide to the collection, analysis, and interpretation of soil indicator data in the forest
inventory and analysis program. U.S. Department of Agriculture, Forest Service, North Central Research Station,
General Technical NC-258, Saint Paul, Minnesota, 53 pp.
Pankiv, Z., Malyk, S. and Yamelynets, T. 2020. Soil-forming
processes in profile textural-differentiated forest soils of
the Cis-Carpathian region, Ukraine. Baltic Forestry 26(2):
229–235. https://doi.org/10.46490/BF472.
Polupan, М.І., Solovei, V.B., and Velychko, V.A. 2005.
Klasyfikatsiia gruntiv Ukrainy [Classification of soils of
Ukraine]. ‘Agrarna Nauka’ Publishing, Kyiv, 300 pp. (‘O.N.
Sokolovskyi’ Institute for Soil Science and Agronomical
Chemistry) (in Ukrainian with English abstract).
Savosko, V.N. 2016. Tiazhiolyie metally в pochvakh Krivbassa
[Heavy metals in soils at Kryvbas]. Dionat, Kryvyi Rih,
288 pp. (in Russian with English abstract).
Savosko, V.M. and Tovstolyak, N.V. 2017. Ekologichni umovy
terytorii sadiv ta parkiv kolyshnikh zaliznykh rudnykiv
(Kryvorizkyi basein, Ukraina). [Ecological conditions of
garden and park territories of former iron mines (Kryvyi
Rih Basin, Ukraine)]. Ukrainian Journal of Ecology 7(4):
12–17 (in Ukrainian with English abstract).
Savosko, V., Lykholat, Y., Domshyna, K. and Lykholat, T.
2018. Ekologichna ta geologichna zumovlenist poshyrennia derev i chaharnykiv na devastovanykh zemliakh
Kryvorizhzhia [Ecological and geological determination
of trees and shrubs’ dispersal on the devastated lands at
Kryvorizhya]. Journal of Geology, Geography and Geoecology 27(1): 116–130 (in Ukrainian with English abstract). https://doi.org/10.15421/111837.
Savosko, V.M. 2019a. Indicators for pedogeochemical barriers
of heavy metals’ migration. Fundamental and Applied Soil
Science 19(1): 5–21. https://doi.org/10.15421/041903.
Savosko, V.M. 2019b. Pedogeochemical barriers of heavy metals’ migration distribution in Chernozems soil profile at
Kryvorizhzhya. Biological Systems 11(2): 243–252 (in
Ukrainian with English abstract). https://doi.org/10.31861/
biosystems2019.02.243.
Savosko, V., Podolyak, A., Komarova, I. and Karpenko, A.
2020a. Modern environmental technologies of healthy soils
contaminated by heavy metals and radionuclides. E3S Web
of Conferences 166: 01007. https://doi.org/10.1051/e3sconf/202016601007.
Savosko, V., Tovstolyak, N., Lykholat, Y. and Grygoryuk, I.
2020b. Structure and diversity of urban park stands at
Kryvyi Rih ore-mining and metallurgical district, central
Ukraine. Agriculture and Forestry 66(3): 105–126. https://
doi.org/10.17707/AgricultForest.66.3.10.
Savosko, V., Bielyk, Yu., Lykholat, Yu., Heilmeier, H., Grygoryuk, I., Khromykh, N. and Lykholat, T. 2021a.
The total content of macronutrients and heavy metals in
the soil on devastated lands at Kryvyi Rih Iron Mining
and Metallurgical District (Ukraine). Journal of Geology,
Geography and Geoecology 30(1): 153–164. https://doi.
org/10.15421/112114.
Savosko, V., Komarova, I., Lykholat, Y., Yevtushenko, E.
and Lykholat, T. 2021b. Predictive model of heavy metals inputs to soil at Kryvyi Rih District and its use in the
training for specialists in the field of Biology. Journal of
Physics Conference Series 1840: 012011. https://doi.
org/10.1088/1742-6596/1840/1/012011.
Saj, S., Nijmeijer, A., Nieboukaho, J.D.E., Lauri, P.E. and
Harmand, J.M. 2021. Litterfall seasonal dynamics and
leaf-litter turnover in cocoa agroforests established on past
forest lands or savannah. Agroforestry Systems 95: 583–597.
https://doi.org/10.1007/s10457-021-00602-0.
Shen, G., Chen, D., Wu, Y., Liu, L. and Liu, C. 2019. Spatial patterns and estimates of global forest litterfall. Ecosphere 10(2): e02587. https://doi.org/10.1002/ecs2.2587.
Soil Survey Staff. 2014. Keys to Soil Taxonomy, 12th ed. USDA-Natural Resources Conservation Service, Washington
D.C., 372 pp.
Sparks, D.L. 2002. Environmental Soil Chemistry. 2nd ed. Academic Press, San Diego, 368 pp.
Sposito, G. 2008. The Chemistry of Soils. 2nd ed. Oxford University Press, New York, 342 pp.
Stanturf, J.A. Callaham, M.A. and Madsen, P. 2021. Landscape degradation and restoration. In: Stanturf, J.A. and
Callaham, M.A. (Eds.) Soils and landscape restoration. Academic Press, New York, p. 1–37. https://doi.org/10.1016/
b978-0-12-813193-0.00001-1.
Stofejova, L., Fazekas, J. and Fazekasova, D. 2021. Analysis of
heavy metal content in soil and plants in the dumping ground
of magnesite mining factory Jelšava-Lubeník (Slovakia). Sustainability 13(8): 4508. https://doi.org/10.3390/su13084508.
Straigyte, L., Vaidelys, T., Zalkauskas, R. and Manton, M.
2019. Impact of urban green spaces, native tree species
and seasons on soil pH in Kaunas, Lithuania. Baltic Forestry 25(2): 257–262.
Sutherland, R.A. 2000. Bed sediment-associated trace metals in
an urban stream, Oahu, Hawaii. Environmental Geology 39:
611–627. https://doi.org/10.1007/s002540050473.
Tomlinson, D.L., Wilson, J.C., Harris, C.R. and Jeffrey, D.W.
1980. Problems in the assessment of heavy-metal levels
in estuaries and the formation of a pollutant index. Helgolander Meeresuntersuchungen 33: 566–575.
Urbina, I., Sardans, J., Grau, O., Beierkuhnlein, C.,
Jentsch, A., Kreyling, J. and Penuelas, J. 2017. Plant community composition affects the species biogeochemical niche.
Ecosphere 8(5): e01801. https://doi.org/10.1002/ecs2.1801.
Wang, D., Xu, Q., Zheng, Q. and Wu, L. 2020. Assessment of
the health effects of heavy metals pollution of agricultural
soils in the iron ore mining area of the Northern Piedmont of
Mount Wutai, Shanxi Province, China. Sustainability 12(5):
1926. https://doi.org/10.3390/su12051926.
Yang, Y., Zhou, H., Ye, Z. and Zhu, C. 2021. Estimation of
Populus euphratica forest leaf litterfall and time variation
of nutrient in leaf litter during decomposition along the
Main Channel of the Tarim River, China. Water 13(18):
2514. https://doi.org/10.3390/w13182514.
Yi, Q. and Cheng, H. 2019. Review of heavy metal pollution by
mining. E3S Web of Conferences 118: 04028. https://doi.
org/10.1051/e3sconf/201911804028.