Abstract:
Головною ідеєю роботи є виявлення можливості досягти якщо не квантового панування, то хоча б квантової переваги при розв’язанні задач машинного навчання на квантовому комп’ютері. Проаналізовано підходи до визначення квантового машинного навчання, інженерії квантового програмного забезпечення. Виділено основні класи засобів інженерії квантового програмного забезпечення. У результаті проведеного аналізу було визначено, щосаме квантово покращене машинне навчання – застосування квантових моделей навчання для аналізу традиційних (не квантових) даних – є перспективним напрямом розвитку машинного навчання, реалізація якого в поточній версії бібліотеки квантових алгоритмів Qiskit Aqua 0.7.3 є обмеженою розв’язанням задач класифікації з використанням квантового методу опорних векторів та варіаційного квантового класифікатору.