Description:
[1] Open Assessment Technologies, Using adaptive testing in digital assessment to support learning, 2020. URL: https://www.taotesting.com/blog/
using-adaptive-testing-in-digital-assessment-to-support-learning/.
[2] A. Abdula, H. Baluta, N. Kozachenko, D. Kassim, Peculiarities of using of the Moodle test
tools in philosophy teaching, CEUR Workshop Proceedings 2643 (2020) 306–320.
[3] K. Polhun, T. Kramarenko, M. Maloivan, A. Tomilina, Shift from blended learning to distance one during the lockdown period using Moodle: test control of students’ academic achievement and analysis of its results, Journal of Physics: Conference Series 1840 (2021) 012053. URL: https://doi.org/10.1088/1742-6596/1840/1/012053.
doi:10.1088/1742-6596/1840/1/012053.
[4] V. Avanesov, Scientific problems of test control, MSU, Moscow, 2004.
[5] Computer adaptive testing: Background, benefits and case study of a large-scale national
testing programme, 2019. URL: https://tinyurl.com/w5925sct.
[6] O. Haranin, N. Moiseienko, Adaptive artificial intelligence in RPG-game on the Unity
game engine, CEUR Workshop Proceedings 2292 (2018) 143–150.
[7] K. Osadcha, V. Osadchyi, S. Semerikov, H. Chemerys, A. Chorna, The review of the
adaptive learning systems for the formation of individual educational trajectory, CEUR
Workshop Proceedings 2732 (2020) 547–558.
[8] J. Comenius, La conception de l’éducation des jeunes enfants selon, International Journal
of Early Childhood 25 (1993) 60–64. doi:10.1007/BF03185620.
[9] J. Pestalozzi, J. Piaget, F. Froebel, Conversation 4: How do young children learn?, in: Early
Childhood Education: History, Philosophy and Experience, 2 ed., SAGE Publications Inc.,
2014, pp. 98–104. doi:10.4135/9781446288863.
[10] A. Diesterweg, Wegweiser zur Bildung für deutsche Lehrer: II, volume 2, Bädeker, 1875.
[11] M. Petrova, M. Mintii, S. Semerikov, N. Volkova, Development of adaptive educational
software on the topic of “Fractional Numbers” for students in grade 5, CEUR Workshop
Proceedings 2292 (2018) 162–192.
[12] A. Albano, L. Cai, E. Lease, S. McConnell, Computerized adaptive testing in early education:
Exploring the impact of item position effects on ability estimation, Journal of Educational
Measurement 56 (2019) 437–451. doi:10.1111/jedm.12215.
[13] E. Austin, A. Henson, H. Kim, K. Ogle, H. Park, Analysis of computer adaptive testing in
a pathopharmacology course, Journal of Nursing Education 60 (2021) 155–158. doi:10.
3928/01484834-20210222-06.
[14] D. Cetin-Berber, H. Sari, A. Huggins-Manley, Imputation methods to deal with missing
responses in computerized adaptive multistage testing, Educational and Psychological
Measurement 79 (2019) 495–511. doi:10.1177/0013164418805532.
[15] C. Collares, D. Cecilio-Fernandes, When i say . . . computerised adaptive testing, Medical
Education 53 (2019) 115–116. doi:10.1111/medu.13648.
[16] E. Istiyono, W. Dwandaru, R. Setiawan, I. Megawati, Developing of computerized adaptive
testing to measure physics higher order thinking skills of senior high school students
and its feasibility of use, European Journal of Educational Research 9 (2020) 91–101.
doi:10.12973/eu-jer.9.1.91.
[17] H.-A. Kang, Y. Zheng, H.-H. Chang, Online calibration of a joint model of item responses
and response times in computerized adaptive testing, Journal of Educational and Behavioral
Statistics 45 (2020) 175–208. doi:10.3102/1076998619879040.
[18] I. Kozmina, D. Lukyantsev, O. Musorina, Computer adaptive testing as an automated control
of students’ level of preparadness taking into account their individual characteristics,
Institute of Electrical and Electronics Engineers Inc., 2020. doi:10.1109/Inforino48376.
2020.9111661.
[19] C.-J. Lin, H.-H. Chang, Item selection criteria with practical constraints in cognitive
diagnostic computerized adaptive testing, Educational and Psychological Measurement 79
(2019) 335–357. doi:10.1177/0013164418790634.
[20] M. Paap, S. Born, J. Braeken, Measurement efficiency for fixed-precision multidimensional
computerized adaptive tests: Comparing health measurement and educational testing
using example banks, Applied Psychological Measurement 43 (2019) 68–83. doi:10.1177/
0146621618765719.
[21] M. Samsudin, T. Somchut, M. Ismail, Evaluating computerized adaptive testing efficiency
in measuring students’ performance in science timss, Jurnal Pendidikan IPA Indonesia 8
(2019) 547–560. doi:10.15294/jpii.v8i4.19417.
[22] W. van der Linden, S. Choi, Improving item-exposure control in adaptive testing, Journal
of Educational Measurement 57 (2020) 405–422. doi:10.1111/jedm.12254.
[23] W. van der Linden, H. Ren, A fast and simple algorithm for bayesian adaptive testing, Journal of Educational and Behavioral Statistics 45 (2020) 58–85. doi:10.3102/
1076998619858970.
[24] W. Wang, L. Song, T. Wang, P. Gao, J. Xiong, A note on the relationship of the shannon entropy procedure and the jensen–shannon divergence in cognitive diagnostic computerized
adaptive testing, SAGE Open 10 (2020). doi:10.1177/2158244019899046.
[25] J.-I. Yasuda, N. Mae, M. Hull, M.-A. Taniguchi, Optimizing the length of computerized
adaptive testing for the force concept inventory, Physical Review Physics Education
Research 17 (2021). doi:10.1103/PhysRevPhysEducRes.17.010115.
[26] V. Bradác, C. Klimes, Language e-learning based on adaptive decision-making system, in:
Proceedings of the European Conference on e-Learning, ECEL, 2013, pp. 48–57.
[27] A.-M. Souki, F. Paraskeva, A. Alexiou, K. A. Papanikolaou, Developing personalised
e-courses: Tailoring students’ learning preferences to a model of self-regulated learning,
Int. J. Learn. Technol. 10 (2015) 188–202. URL: https://doi.org/10.1504/IJLT.2015.072357.
doi:10.1504/IJLT.2015.072357.
[28] Z. Balogh, M. Turcáni, M. Burianová, Personalized learning and current technologies in
teaching it related subjects, in: 2019 International Symposium on Educational Technology
(ISET), 2019, pp. 124–126. doi:10.1109/ISET.2019.00034.
[29] Y. Susanti, T. Tokunaga, H. Nishikawa, Integrating automatic question generation with computerised adaptive test, Research and Practice in Technology Enhanced Learning 15 (2020) 9.
URL: https://doi.org/10.1186/s41039-020-00132-w. doi:10.1186/s41039-020-00132-w.
[30] B. D. Wright, M. H. Stone, Best test design, Mesa Press, 1979.
[31] V. Kudryavtseva, T. Malakhivska, O. Moroz, Y. Petrovska, O. Frolova, Welcome Aboard:
coursebook, STAR, Kherson, 2018.
[32] N. Shapovalova, O. Rybalchenko, I. Dotsenko, S. Bilashenko, A. Striuk, L. Saitgareev,
Adaptive testing model as the method of quality knowledge control individualizing, CEUR
Workshop Proceedings 2393 (2019) 984–999.
[33] M. B. Chelishkova, Adaptive testing in education (theory, methodology, technology),
Research Center for Problems of Preparing Specialists, Moscow, 2001.
[34] I. Mintii, S. Shokaliuk, T. Vakaliuk, M. Mintii, V. Soloviev, Import test questions into
Moodle LMS, CEUR Workshop Proceedings 2433 (2019) 529–540.
[35] Computerized adaptive testing, 2020. URL: https://assess.com/adaptive-testing/.
[36] P. Fedoruk, Technology of learning process construction in adaptive systems of distance
learning, in: Proceedings of the 12th IASTED International Conference on Computers and
Advanced Technology in Education, CATE 2009, St. Thomas, 2009, pp. 228–230.
[37] Y. Tyshchenko, A. Striuk, The relevance of developing a model of adaptive learning, CEUR
Workshop Proceedings 2292 (2018) 109–115.
[38] Model Course 3.17. Maritime English, 2015 ed., International Maritime Organization, 2015.
[39] J. Winkley, Adaptive testing, 2020. URL: https://www.e-assessment.com/news/
adaptive-testing/.
[40] V. Vasil’ev, T. Tyagunova, Fundamentals of the culture of adaptive testing, IKAR, Moscow,
2003.
[41] F. M. Lord, Application of Item Response Theory to Practical Testing Problems, Routledge,
2012.
[42] Y. Lebedenko, V. Danyk, P. Krupitsa, Adaptive control of the combined propulsion system,
in: 2016 4th International Conference on Methods and Systems of Navigation and Motion
Control (MSNMC), 2016, pp. 214–217. doi:10.1109/MSNMC.2016.7783145.
[43] A. Y. Yurzhenko, An e-course based on the LMS Moodle to teach “Maritime English for
professional purpose”, Information Technologies and Learning Tools 71 (2019) 92–101. URL:
https://journal.iitta.gov.ua/index.php/itlt/article/view/2512. doi:10.33407/itlt.v71i3.
2512.
[44] H. Popova, A. Yurzhenko, Competency framework as an instrument to assess professional
competency of future seafarers, CEUR Workshop Proceedings 2387 (2019) 409–413.
[45] N. Kolesnichenko, T. Hladun, O. Diahyleva, L. Hats, A. Karnaukhova, Increasing students’
motivation to learn at tertiary educational institutions, International Journal of Higher
Education 9 (2020) 166–175. doi:10.5430/ijhe.v9n7p166.
[46] S. Lavrynenko, L. Krymets, A. Leshchenko, Y. Chaika, O. Holovina, Purpose and features
of teaching philosophical disciplines at tertiary educational institutions while training
specialists of various knowledge areas, International Journal of Higher Education 9 (2020)
321–331. doi:10.5430/ijhe.v9n7p321.
[47] S. Voloshynov, H. Popova, A. Yurzhenko, E. Shmeltser, The use of digital escape room
in educational electronic environment of maritime higher education institutions, CEUR
Workshop Proceedings 2643 (2020) 347–359.
[48] Activities, 2020. URL: https://docs.moodle.org/39/en/Activities.