Description:
[1] R. Arjmand, M. Massinaei, A. Behnamfard, Improving flocculation and dewatering performance
of iron tailings thickeners, Journal Of Water Process Engineering. 31 (2019) 100873.
doi:10.1016/j.jwpe.2019.100873.
[2] M. Garmsiri, M. Unesi, Challenges and opportunities of hydrocyclone-thickener dewatering
circuit: A pilot scale study, Minerals Engineering. 122 (2018) 206-210.
doi:10.1016/j.mineng.2018.04.001.
[3] S. Tripathy, Y. Murthy, S. Farrokhpay, L. Filippov, Design and analysis of dewatering circuits
for a chromite processing plant tailing slurry, Mineral Processing And Extractive Metallurgy
Review. 42 (2019) 102-114. doi:10.1080/08827508.2019.1700983.
[4] P. Fawell, T. Nguyen, C. Solnordal, D. Stephens, Enhancing Gravity Thickener Feedwell Design
and Operation for Optimal Flocculation through the Application of Computational Fluid
Dynamics, Mineral Processing And Extractive Metallurgy Review. (2019) 1-15.
doi:10.1080/08827508.2019.1678156.
[5] X. Chen, X. Jin, H. Jiao, Y. Yang, J. Liu, Pore Connectivity and Dewatering Mechanism of
Tailings Bed in Raking Deep-Cone Thickener Process, Minerals. 10 (2020) 375.
doi:10.3390/min10040375.
[6] G. Liang, Q. Zhao, B. Liu, Z. Du, X. Xia, Treatment and reuse of process water with high
suspended solids in low-grade iron ore dressing, Journal Of Cleaner Production. 278 (2021)
123493. doi:10.1016/j.jclepro.2020.123493.
[7] C. Wang, J. Ding, R. Cheng, C. Liu, T. Chai, Data-Driven Surrogate-Assisted Multi-Objective
Optimization of Complex Beneficiation Operational Process, IFAC-Papersonline. 50 (2017)
14982-14987. doi:10.1016/j.ifacol.2017.08.2561.
[8] R. Dwari, S. Angadi, S. Tripathy, Studies on flocculation characteristics of chromite’s ore
process tailing: Effect of flocculants ionicity and molecular mass, Colloids And Surfaces A:
Physicochemical And Engineering Aspects. 537 (2018) 467-477.
doi:10.1016/j.colsurfa.2017.10.069.
[9] A. Leite, É. Reis, Cationic starches as flocculants of iron ore tailing slime, Minerals Engineering.
148 (2020) 106195. doi:10.1016/j.mineng.2020.106195.
[10] L. Zhu, W. Lyu, P. Yang, Z. Wang, Effect of ultrasound on the flocculation-sedimentation and
thickening of unclassified tailings, Ultrasonics Sonochemistry. 66 (2020) 104984.
doi:10.1016/j.ultsonch.2020.104984.
[11] Y. Zhao, L. Meng, X. Shen, Study on ultrasonic-electrochemical treatment for difficult-to-settle
slime water, Ultrasonics Sonochemistry. 64 (2020) 104978.
doi:10.1016/j.ultsonch.2020.104978.3.
[12] R. Jia, B. Zhang, D. He, Z. Mao, F. Chu, Data-driven-based self-healing control of abnormal
feeding conditions in thickening–dewatering process, Minerals Engineering. 146 (2020) 106141.
doi:10.1016/j.mineng.2019.106141.
[13] Y. Mikhlin, S. Vorobyev, A. Romanchenko, S. Karasev, A. Karacharov, S. Zharkov, Ultrafine
particles derived from mineral processing: A case study of the Pb–Zn sulfide ore with emphasis
on lead-bearing colloids, Chemosphere. 147 (2016) 60-66.
doi:10.1016/j.chemosphere.2015.12.096.
[14] T. Leistner, U. Peuker, M. Rudolph, How gangue particle size can affect the recovery of ultrafine
and fine particles during froth flotation, Minerals Engineering. 109 (2017) 1-9.
doi:10.1016/j.mineng.2017.02.005.
[15] J. Carpenter, S. Iveson, K. Galvin, Ultrafine desliming using a REFLUX™ classifier subjected to
centrifugal G forces, Minerals Engineering. 134 (2019) 372-380.
doi:10.1016/j.mineng.2019.02.013.
[16] E. Matiolo, H. Couto, N. Lima, K. Silva, A. de Freitas, Improving recovery of iron using column
flotation of iron ore slimes, Minerals Engineering. 158 (2020) 106608.
doi:10.1016/j.mineng.2020.106608.
[17] V. Morkun, S. Semerikov, S.Hryshchenko, K.Slovak, Environmental geo-information
technologies as a tool of pre-service mining engineer's training for sustainable development of
mining industry, CEUR Workshop Proceedings. 1844 (2017) 303-310.
[18] V. Morkun, N. Morkun, V.Tron, Distributed control of ore beneficiation interrelated processes
under parametric uncertainty. Metallurgical and Mining Industry. 7(8) (2015) 18-21.
[19] S. Rath, N. Dhawan, D. Rao, B. Das, B. Mishra, Beneficiation studies of a difficult to treat iron
ore using conventional and microwave roasting, Powder Technology. 301 (2016) 1016-1024.
doi:10.1016/j.powtec.2016.07.044.
[20] V. Morkun, N. Morkun, Estimation of the crushed ore particles density in the pulp flow based on
the dynamic effects of high-energy ultrasound, Archives of Acoustics. 43(1) (2018) 61-67.
[21] V. Morkun, N. Morkun, A. Pikilnyak, The adaptive control for intensity of ultrasonic influence
on iron ore pulp, Metallurgical and Mining Industry. 6(6) (2014) 8-11.
[22] S. Mahiuddin, S. Bondyopadhway, J. Baruah, A study on the beneficiation of indian iron-ore
fines and slime using chemical additives, International Journal Of Mineral Processing. 26 (1989)
285-296. doi:10.1016/0301-7516(89)90034-3.
[23] High intensity focused ultrasound simulator, Mathworks.com. (2021).
https://www.mathworks.com/matlabcentral/fileexchange/30886-high-intensity-focusedultrasound-simulator?s_tid=srchtitle (accessed 5 February 2020).
[24] V. Morkun, N. Morkun, V. Tron, Model synthesis of nonlinear nonstationary dynamical systems
in concentrating production using Volterra kernel transformation, Metallurgical and Mining
Industry. 7(10) (2015) 6-9.
[25] M. Mamina, R. Maganga, K. Dzwiti, An analysis of Zimbabwe's comparative advantage in the
beneficiation and value addition of minerals, Resources Policy. 69 (2020) 101823.
doi:10.1016/j.resourpol.2020.101823.
[26] Y. Chen, V. Truong, X. Bu, G. Xie, A review of effects and applications of ultrasound in mineral
flotation, Ultrasonics Sonochemistry. 60 (2020) 104739. doi:10.1016/j.ultsonch.2019.104739.
[27] V. Golik, V. Komashchenko, V. Morkun, V. Zaalishvili, Enhancement of lost ore production
efficiency by usage of canopies, Metallurgical and Mining Industry 7(4) (2015) 325-329.
[28] O. P. Kreuzer, M. Yousefi, V. Nykänen, Introduction to the special issue on spatial modelling
and analysis of ore-forming processes in mineral exploration targeting, Ore Geology Reviews.
119 (2020) 103391. doi:10.1016/j.oregeorev.2020.103391.
[29] New ZET 230 ADC module, technical characteristics, news, ZETLAB. (2021).
https://zetlab.com/en/new-zet-230-adc-module/ (accessed 15 February 2021).
[30] C. Besta, A. Kastala, P. Ginuga, R. Vadeghar, MATLAB Interfacing: Real-time Implementation
of a Fuzzy Logic Controller, IFAC Proceedings Volumes. 46 (2013) 349-354.
doi:10.3182/20131218-3-in-2045.00189.