Description:
1. Sornette, D.: Why Stock Markets Crash: Critical Events in Complex Systems. Princeton
University Press. (2003).
2. Chen, L., Qiao, Z., Wang, M., Wang C., Du, R., Stanley, H. E.: Which Artificial Intelligence Algorithm Better Predicts the Chinese Stock Market? In: IEEE Access 6, 48625-
48633. IEEE Press, New York (2018). doi: 10.1109/ACCESS.2018.2859809
3. Chong, E., Han, C., Park, F.C.: Deep learning networks for stock market analysis and prediction: Methodology, data representations, and case studies. Expert Systems With Applications 83, 187-205 (2017).
4. Franses, P.H., Dijk D.V.: Forecasting Stock Market Volatility Using (Non-Linear) Garch
Models. Journal of Forecasting 15, 229-235 (1996). doi: 10.1002/(SICI)1099-
131X(199604)15:3<229::AID-FOR620>3.0.CO;2-3
5. Pan, H., Zhang, Z.: Forecasting Financial Volatility: Evidence from Chinese Stock Market.
Durham Business School Working Paper Series 6(2), 1-31 (2006).
doi:10.2139/ssrn.903937
6. Li, S.I., Yoo, S.J.: Multimodal Deep Learning for Finance: Integrating and Forecasting International Stock Markets. https://arXiv:1903.06478v1 [q-fin.CP] ( 2019).
7. Brailsford, T.J., Faff, R.W.: An Evaluation of Volatility Forecasting Techniques, Journal
of Banking and Finance 20, 419-438 (1996).
8. Zemba, W.T., Lileo, S., Zhitlukhin, M.: Stock Market Crashes: Predictable and Unpredictable and What to Do About Them. World Scientific (2018).
9. Zeman M.: A comparative analysis of 1997 East Asian Tigers crisis and EU sovereign debt
crisis, Main study cases: Thailand and Greece, University of Vienna (2013).
10. Mattarocci G.: Market Characteristics and Chaos Dynamics in Stock Markets: An International Comparison. SSRN Electronic Journal (2006). doi: 10.2139/ssrn.928796
11. Hsieh, D.A.: Chaos and Nonlinear Dynamics: Application to Financial Markets. The Journal of Finance 46, 1839–1877 (1991).
12. Stutzer, M.J.: Chaotic dynamics and bifurcation in a macro model. Journal of Economic
Dynamics and Control 2(1), 353-376 (1980). doi: 10.1016/0165-1889(80)90070-6
13. Hesieh, D.A.: Testing for Nonlinear Dependence in Daily Foreign Exchange Rates. The
Journal of Business 62(3), 339-368 (1989).
14. Lim, K.P., Liew, K.S.: Testing for Non-Linearity in ASEAN Financial Markets. (2003).
15. Chen, L.: On the Chaotic Dynamics Analysis of China Stock Market. In: Proceedings of
the 9th International Conference for Young Computer Scientists, pp 3011-3015. IEEE
Press, New York (2008). doi: 10.1109/ICYCS.2008.392
16. De Grauwe, P., Vansteenkiste I.: Exchange rates and fundamentals A non-linear relationship? International Journal Finance Economics 12(1), 37-54 (2007). doi: 10.1002/ijfe.310 17. Scheinkman, J.A., LeBaron, B.: Nonlinear Dynamics and Stock Returns. Journal of Business 62(3), 311-337 (1989). doi: 10.1086/296465
18. Abarbanel, H.D.I.: Analysis of Observed Chaotic Data. Springer-Verlag, New York
(1996). doi: 10.1007/978-1-4612-0763-4
19. Kulkarni, S.V.: Complexity, Chaos, and the Duffing-Oscillator Model: An Analysis of Inventory Fluctuations in Markets. arXiv:1308.1616v1 [q-fin.GN] 24 Jul 2013
20. Bajo-Rubio, O., Fernández-Rodríguez, F., Sosvilla-Rivero, S.: Chaotic behaviour in exchange-rate series: First results for the Peseta-U.S. Dollarcase. Economics Letters 39, 207-
211 (1992). doi: 10.1016/0165-1765(92)90291-6
21. Dechert, W., Gençay, R.: Lyapunov Exponents as a Nonparametric Diagnostic for Stability Analysis. Journal of Applied Econometrics 7, 41-60 (1992). doi:
10.1002/jae.3950070505
22. Gençay, R.: A statistical framework for testing chaotic dynamics via Lyapunov exponents.
Physica D 89, 261-266 (1996).
23. Sarkar S., Chadha V.: Analysing the Behaviour of Local Hurst Exponent and Lyapunov
Exponent for Prediction of Market Crashes. World Academy of Science, Engineering and
Technology International Journal of Economics and Management Engineering 13(4),
(2019).
24. Srinivasan, S., Prasad, S., Patil, S., Lazarou G., Picone, J.: Estimation of Lyapunov Spectra
from a Time Series. In: Proceedings of the IEEE SoutheastCon 2006, pp. 192-195. IEEE
Press, New York (2006). doi: 10.1109/second.2006.1629348
25. Mastroeni, L., Vellucci, P.: "Chaos" in energy and commodity markets: a controversial
matter arXiv:1611.07432v2 [q-fin.ST] 29 Mar 2017
26. Plakandaras, V., Gupta, R., Wohar, M.E.: Persistence of economic uncertainty: a comprehensive analysis. Applied Economics 51(41), 4477-4498 (2019). doi:
10.1080/00036846.2019.1591607
27. Chakrabarti, G., Sen, C.: Anatomy of Global Stock Market Crashes. SpringerBriefs in
Economics, Springer India (2012). doi: 10.1007/978-81-322-0463-3
28. Soloviev, V., Belinskij, A.: Methods of nonlinear dynamics and the construction of cryptocurrency crisis phenomena precursors. In: Ermolayev, V., Suárez-Figueroa, M.C., Yakovyna, V., Kharchenko, V., Kobets, V., Kravtsov, H., Peschanenko, V., Prytula, Y., Nikitchenko, M., Spivakovsky, A. (eds.) Proceedings of the 14th International Conference on
ICT in Education, Research and Industrial Applications. Integration, Harmonization and
Knowledge Transfer. Volume II: Workshops, Kyiv, Ukraine, May 14-17, 2018. CEUR
Workshop Proceedings, vol. 2014, pp. 116–127. http://ceur-ws.org/Vol2104/paper_175.pdf. Accessed 24 Mar 2019
29. Soloviev, V., Belinskij, A.: Complex Systems Theory and Crashes of Cryptocurrency
Market. In book: Information and Communication Technologies in Education, Research,
and Industrial Applications. 14th International Conference, ICTERI 2018, Kyiv, Ukraine,
May 14-17, 2018, Revised Selected Papers. Communications in Computer and Information
Science 2019, vol. 1007, pp. 276-297. https://link.springer.com/chapter/10.1007/978-3-
030-13929-2_14.
30. Soloviev, V., Belinskij, A., Solovieva, V.: Entropy analysis of crisis phenomena for DJIA
index. In: Ermolayev, V., Mallet, Yakovyna, V., Kharchenko, V., Kobets, V., Kornilowicz, A., Kravtsov, Nikitchenko, M., Semerikov, S., Spivakovsky, A. (eds.) Proceedings
of the 15th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer. Volume II: Workshops,
Kherson, Ukraine, June 12-15, 2019. CEUR Workshop Proceedings, vol. 2393, pp. 434–
449. http://ceur-ws.org/Vol-2393/paper_375.pdf. 31. Belinskyi, A., Soloviev, V., Semerikov, S., Solovieva, V.: Detecting stock crashes using
Levy distribution. In: Kiv, A., Semerikov, S., Soloviev, V., Kibalnik, L., Danylchuk, H.,
Matviychuk, A. (eds) Proceedings of the Selected Papers of the 8th International Conference on Monitoring, Modeling & Management of Emergent Economy (M3E2-
EEMLPEED 2019) Odessa, Ukraine, May 22-24, 2019. CEUR Workshop Proceedings,
vol. 2422, pp. 420–433. http://ceur-ws.org/Vol-2422/paper_34.pdf.
32. Nychka, D., Ellner, S., Gallant, A.R., McCaffrey, D.: Finding chaos in noisy system. Journal of the Royal Statistical Society. 54(2), 399-426 (1992). doi: 10.2307/2346135
33. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents
from a time series. Phys. D Nonlinear Phenomena. 16(3), 285–317 (1985). doi:
10.1016/0167-2789(85)90011-9
34. Sano, M., Sawada, Y.: Measurement of the Lyapunov spectrum from a chaotic time series.
Phys. Rev. Lett. 55(10), 1082–1085 (1985). doi: 10.1103/PhysRevLett.55.1082
35. Eckmann, J. P., Kamphorst, S. O., Ruelle, D., Ciliberto, S.: Liapunov exponents from time
series. Physical Review A, 34(6) (1986). doi: 10.1103/PhysRevA.34.4971
36. Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating largest
Lyapunov exponents from small data sets. Phys. 65(1–2), 117–134 (1993). doi:
10.1016/0167-2789(93)90009-P
37. Parlitz, U.: Identification of true and spurious Lyapunov exponents from time series. Int. J.
Bifurc. Chaos. 2(1), 155–165 (1992).
38. Balcerzak, M., Pikunov, D., Dabrowski, A.: The fastest, simplified method of Lyapunov
exponents spectrum estimation for continuous-time dynamical systems. Nonlinear Dyn.
94, 3053-3065 (2018). doi: 10.1007/s11071-018-4544-z
39. Eckmann, J.-P., Kamphorst, S.O., Ruelle, D.: Recurrence plots of dynamical systems, Europhys. Lett. 5, 973–977 (1987).
40. Takens F: Detecting strange attractors in turbulence. Springer, Coventry, England (1981).
41. Wilkinson, J. H., Reinsch, C.: Linear Algebra. Springer-Verlag, Berlin (1971).
42. Recurrence Plots and Their Quantifications: Expanding Horizons. Webber C.L., Marwan
N.(eds.). Proceedings of the 6th International Symposium on Recurrence Plots, Grenoble,
France, 17–19 June 2015, 180, 1-387. Springer, Heidelberg (2016).
43. Marwan, N., Romano, M.C., Theil, M, Kurths, J.: Recurrence plot for the analysis of complex systems. Phys. Rep. 438, 237–329 (2007).
44. Gao, J., Hu, J., Tung, W.-W., Zheng, Y.: Multiscale analysis of economic time series
scale-dependent Lyapunov exponent. Quantitative Finance 13(2), 1-10 (2011).