Description:
1. Devedžic, V.: Web intelligence and artificial intelligence in education. Journal of
Educational Technology & Society 7(4), 29-39 (2004)
2. Gagarin, O.O., Tytenko, S.V.: The research and analysis of methods and models of
intelligence systems of continuous education. Scientific news NTUU “KPI” 6(56), 37–48
(2007)
3. Murray, Т.: Authoring Intelligent Tutoring Systems: An Analysis of the State of the Art.
International Journal of Artificial Intelligence in Education 10, 98–129 (1999) 4. Truong, M.H.: Integrating learning styles and adaptive e-learning system: Current
developments, problems and opportunities. Computers in Human Behavior 55(B), 1185–
1193 (2016). doi:10.1016/j.chb.2015.02.014
5. De Bra, P.: Web-based educational hypermedia. In: Romero, C., Ventura, S. (eds.) Data
Mining in E-Learning, pp. 3–19. Universidad de Cordoba, Spain, WIT Press.
http://wwwis.win.tue.nl/~debra/dm-elearning.pdf (2006). Accessed 20 March 2020
6. Brusilovsky, P., Henze, N.: Open corpus adaptive educational hypermedia. In: The Adaptive
Web. Lecture Notes in Computer Science, vol. 4321, pp. 671–696. (2007). doi:10.1007/978-
3-540-72079-9_22
7. Conlan, O., O'Keeffe, I., Tallon, S.: Combining adaptive hypermedia techniques and
ontology reasoning to produce dynamic personalized news services. In: Proc. of 4th
International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems
(AH'2006), Dublin, Ireland, Lecture Notes in Computer Science, 4018, pp. 81–90. SpringerVerlag Berlin Heidelberg (2006). doi:10.1007/11768012_10
8. Stash, N., Cristea, A., De Bra, P.: Authoring of Learning Styles in Adaptive Hypermedia:
Problems and Solutions. Proceedings of the 13th international conference on World Wide
Web - Alternate Track Papers & Posters, WWW 2004, New York, NY, USA, May 17-20,
2004, pp. 114–123 (2004)
9. Poguda, A.A.: The models and algorithms of knowledge control in humanities. Dissertation,
Tomsk State University of Control Systems and Radioelectronics (2016)
10. Dobrovolskaja, N.J.: The computer neural network technologies as the tool of individualized
education of students of physical and mathematical specialties. Dissertation (2009)
11. Tlili, A., Denden, M., Essalmi, F., Jemni, M., Chang, M., Kinshuk, Chen, N.-Sh.: Automatic
modeling learner’s personality using learning analytics approach in an intelligent Moodle
learning platform. Interactive Learning Environments (2019).
doi:10.1080/10494820.2019.1636084
12. Laeeq, K., Memon, Z.A.: Scavenge: an intelligent multi-agent based voice-enabled virtual
assistant for LMS. Interactive Learning Environments (2019).
doi:10.1080/10494820.2019.1614634
13. Osadchyi, V., Osadcha, K., Eremeev, V.: The model of the intelligence system for the
analysis of qualifications frameworks of European countries. International Journal of
Computing 16(3), 133–142. http://computingonline.net/computing/article/view/896 (2017).
Accessed 21 March 2020
14. Eremeev, V.S., Osadchyi, V.V., Gulynina, E.V., Doneva, O.V.: A mathematical model of an
intelligent information system for a comparative analysis of European qualification
standards. Global Journal of Pure and Applied Mathematics 12(3), 2113–2132 (2016)
15. Voloshinov, S., Kruglyk, V., Osadchyi, V., Osadcha, K., Symonenko, S.: Realities and
prospects of distance learning at higher education institutions of Ukraine. Ukrainian Journal
of Educational Studies and Information Technology 8(1), 1–16 (2020).
doi:10.32919/uesit.2020.01.01
16. Symonenko, S.V., Zaitseva, N.V., Osadchyi, V.V., Osadcha, K.P., Shmeltser, E.O.: Virtual
reality in foreign language training at higher educational institutions. In: Kiv, A.E.,
Shyshkina, M.P. (eds.) Proceedings of the 2nd International Workshop on Augmented
Reality in Education (AREdu 2019), Kryvyi Rih, Ukraine, March 22, 2019. CEUR
Workshop Proceedings 2547, 37–49. http://ceur-ws.org/Vol-2547/paper03.pdf (2020).
Accessed 10 Feb 2020
17. Chemerys, H., Osadcha, K., Osadchyi, V., Kruhlyk, V.: Increase of the level of graphic
competence future bachelor in computer sciences in the process of studying 3D modeling.
CEUR Workshop Proceedings 2393, 17–28. http://ceur-ws.org/Vol-2393/paper_378.pdf
(2019). Accessed 22 March 2020 18. Kruglyk, V.S., Osadchyi, V.V.: Developing competency in programming among future
software engineers. Integration of Education 23(4), 587–606 (2019). doi:10.15507/1991-
9468.097.023.201904.587-606
19. Gorbatuc, R., Dudka, U.: Training of future specialists in economics with the help of online
service LearningApps. Ukrainian Journal of Educational Studies and Information
Technology 7(3), 42-56 (2019). doi:10.32919/uesit.2019.03.05
20. Spirin, O., Oleksiuk, V., Balyk, N., Lytvynova, S., Sydorenko, S. The blended methodology
of learning computer networks: Cloud-based approach. CEUR Workshop Proceedings, 2393,
68-80 (2019). http://ceur-ws.org/Vol-2393/paper_231.pdf
21. Verkhovna Rada of Ukraine: The Law “On Education” No. 2145-VIII.
https://zakon.rada.gov.ua/laws/show/2145-19 (2017). Accessed 22 March 2020
22. Tyshchenko, Ye.Yu., Striuk, A.M.: The relevance of developing a model of adaptive
learning. In: Kiv, A.E., Semerikov, S.O., Soloviev, V.N., Striuk, A.M. (eds.) Proceedings of
the 1st Student Workshop on Computer Science & Software Engineering (CS&SE@SW
2018), Kryvyi Rih, Ukraine, November 30, 2018. CEUR Workshop Proceedings 2292, 109–
115. http://ceur-ws.org/Vol-2292/paper12.pdf (2018). Accessed 31 Dec 2018
23. Fröschl, C.: User Modeling and User Profiling in Adaptive E-learning Systems. Master
Thesis, Graz University of Technology, Austria (2005)
24. Mödritscher, F., Garcia-Barrios, V.M., Gütl, C.: The Past, the Present and the Future of
adaptive E-Learning. Proceedings of the International Conference Interactive Computer
Aided Learning.
http://www.moedritscher.com/papers/paper_moedritscher_et_al_adaptiveelearning_2004.pdf
(2004). Accessed 22 March 2020
25. Karampiperis, P., Sampson, D.: Adaptive Learning Resources Sequencing in Educational
Hypermedia Systems. Educational Technology & Society 8(4), 128-147 (2005)
26. Ratings company self-assessment, guided by the CWiC Framework | Complete Framework -
Courseware in Context Homepage. http://coursewareincontext.org/studies/coursewarecontext-2017/complete-framework/ (2017). Accessed 21 March 2020
27. Knewton Adaptive Learning. Building the world’s most powerful education
recommendation engine.
http://www.lmi.ub.edu/cursos/s21/REPOSITORIO/documents/knewton-adaptive-learningwhitepaper.pdf (2012). Accessed 21 March 2020