Description:
1. Avalos-Gaytán, V., Almendral, J.A., Leyva, I., Battiston, F., Nicosia, V., Latora, V.,
Boccaletti, S.: Emergent explosive synchronization in adaptive complex networks. Physical
Review E 97(4), 042301 (2019)
2. Bargigli, L., di Iasio, G., Infante, L., Lillo, F., Pierobon, F.: The multiplex structure of
interbank networks. Quantitative Finance 15(4), 673–691 (2015)
3. Bianconi, G.: Interdisciplinary and physics challenges in network theory. EPL 111(5),
56001 (2015)
4. Boccaletti, S., Bianconi, G., Criado, R., del Genio, C.I., Gómez-Gardeñes, J., Romance, M.,
Sendiña-Nadal, I., Wang, Z., Zanin, M.: The structure and dynamics of multilayer networks.
Physics Reports 544(1), 1–122 (2014)
5. Chatzis, S.P., Siakoulis, V., Petropoulos, A., Stavroulakis, E., Vlachogiannakis, N.:
Forecasting stock market crisis events using deep and statistical machine learning
techniques. Expert Systems with Applications 112, 353–371 (2018). doi:
10.1016/j.eswa.2018.06.032
6. Cheng, F., Kovács, I.A., Barabási, A.L.: Network-based prediction of drug combinations.
Nature Communications 10(1), 1197 (2019)
7. Crypto Currency Index CCi30. http://cci30.com (2020). Accessed 17 Aug 2020
8. Derbentsev, V., Matviychuk, A., Soloviev, V.N.: Forecasting of Cryptocurrency Prices
Using Machine Learning. In: Pichl, L., Eom, C., Scalas, E., Kaizoji, T. (eds.) Advanced
Studies of Financial Technologies and Cryptocurrency Markets, pp. 211–231. Springer,
Singapore (2020). doi:10.1007/978-981-15-4498-9_12
9. Donner, R.V., Small, M., Donges, J.F., Marwan, N., Zou, Y., Xiang, R., Kurths, J.:
Recurrence-based time series analysis by means of complex network methods. International
Journal of Bifurcation and Chaos 21(4), 1019–1046 (2011)
10. Fortunato, S., Bergstrom, C.T., Börner, K., Evans, J.A., Helbing, D., Milojević, S.,
Petersen, A.M., Radicchi, F., Sinatra, R., Uzzi, B., Vespignani, A., Waltman, L., Wang, D.,
Barabási, A.-L.: Science of science. Science 359(6379), eaao0185 (2018)
11. Kiv, A., Semerikov, S., Soloviev, V., Kibalnyk, L., Danylchuk, H., Matviychuk, A.:
Experimental Economics and Machine Learning for Prediction of Emergent Economy
Dynamics. CEUR Workshop Proceedings 2422, 1–4 (2019)
12. Lacasa, L., Luque, B., Ballesteros, F., Luque, J., Nuño, J.C.: From time series to complex
networks: The visibility graph. Proceedings of the National Academy of Sciences of the
United States of America 105(13), 4972–4975 (2008)
13. Lacasa, L., Nicosia, V., Latora, V.: Network structure of multivariate time series. Scientific
Reports 5, 15508 (2015) doi:10.1038/srep15508
14. Li, S., Wen, S.: Multiplex Networks of the Guarantee Market: Evidence from China.
Complexity 2017, 9781890 (2017). doi:10.1155/2017/9781890
15. List of stock market crashes and bear markets.
https://en.wikipedia.org/wiki/List_of_stock_market_crashes_and_bear_markets (2020).
Accessed 17 Aug 2020
16. Luque, B., Lacasa, L., Ballesteros, F., Luque, J.: Horizontal visibility graphs: Exact results
for random time series. Physical Review E 80(4), 046103 (2009).
doi:10.1103/PhysRevE.80.046103
17. Malinetskii, G.G., Akhromeeva, T.S.: Self Organization in Complex Systems and New
Problems in the Theory of Measurement. Measurement Techniques 59(6), 577–583 (2016)
18. Markova, O., Semerikov, S., Popel, M.: CoCalc as a learning tool for neural network
simulation in the special course “Foundations of Mathematic Informatics”. CEUR
Workshop Proceedings 2104, 338–403 (2018)
19. Musmeci, N., Nicosia, V., Aste, T., Di Matteo, T., Latora, V.: The Multiplex Dependency
Structure of Financial Markets. Complexity 2017, 9586064 (2017).
doi:10.1155/2017/9586064
20. Newman, M.E.J., Barabási, A.L., Watts, D.: The Structure and Dynamics of Networks.
Princeton University Press, Princeton (2006)
21. Prigogine, I.R.: Networks society. Sotsiologicheskie Issledovaniya (1), 24–27 (2008)
22. Riolo, M.A., Newman, M.E.J.: Consistency of community structure in complex networks.
Physical Review E 101(5), 052306 (2020)
23. Semerikov, S., Chukharev, S., Sakhno, S., Striuk, A., Osadchyi, V., Solovieva, V.,
Vakaliuk, T., Nechypurenko, P., Bondarenko, O., Danylchuk, H.: Our sustainable
coronavirus future. E3S Web of Conferences 166, 00001 (2020).
doi:10.1051/e3sconf/202016600001
24. Semerikov, S.O., Teplytskyi, I.O., Yechkalo, Yu.V., Markova, O.M., Soloviev, V.N., Kiv,
A.E.: Computer Simulation of Neural Networks Using Spreadsheets: Dr. Anderson,
Welcome Back. CEUR Workshop Proceedings 2393, 833–848 (2019)
25. Soloviev, V., Belinskij, A.: Methods of nonlinear dynamics and the construction of
cryptocurrency crisis phenomena precursors. CEUR Workshop Proceedings 2104, 116–127
(2018)
26. Soloviev, V., Solovieva, V., Tuliakova, A., Ivanova, M.: Construction of crisis precursors
in multiplex networks. Advances in Economics, Business and Management Research 99,
361–366 (2019) doi:10.2991/mdsmes-19.2019.68
27. Soloviev, V., Solovieva, V., Tuliakova, A.: Visibility graphs and precursors of stock
crashes. Neuro-Fuzzy Technologies of Modeling in Economy 8, 3–29 (2019).
doi:10.33111/nfmte.2019.003
28. Soloviev, V., Tuliakova, A.: Graphodinamical Research Methods for Complexity of
Modern Stock Markets. Neuro-Fuzzy Technologies of Modeling in Economy 5, 152–179,
(2016)
29. Soloviev, V.N., Belinskiy, A.: Complex Systems Theory and Crashes of Cryptocurrency
Market. Communications in Computer and Information Science 1007, 276–297 (2019)
30. Stephen, C.: Dynamic Phase and Group Detection in Pedestrian Crowd Data Using
Multiplex Visibility Graphs. Procedia Computer Science 53, 410–419 (2015)
31. Vespignani, A.: Twenty years of network science. Nature 558(7711), 528–529 (2018)
32. Xie, A.: The Ultimate Guide on Cryptocurrency Index Funds.
https://www.hodlbot.io/blog/ultimate-guide-on-cryptocurrency-indices (2019). Accessed
25 Oct 2019
33. Yahoo Finance: All Cryptocurrencies Screener.
https://finance.yahoo.com/cryptocurrencies (2020). Accessed 17 Aug 2020
34. Yahoo Finance: Stock Market Live, Quotes, Business & Finance News.
https://finance.yahoo.com (2020). Accessed 17 Aug 2020