Description:
1. M.B. Adams (ed.), The forestry reclamation approach: guide to successful reforestation of mined lands (U.S. Department of Agriculture, Forest Service, Northern Research Station, 2017). doi:10.2737/NRS GTR-169. 2. A.M.O. Ajasa, M.O. Bello, A.O. Ibrahim, I.A. Ogunwande, N.O. Olawore, Heavy trace metals and macronutrients status in herbal plants of Nigeria. Food Chem. 85(1), 67–71 (2004). doi:10.1016/j.foodchem.2003.06.004 3. H. Ali, E. Khan, M.A. Sajad, Phytoremediation of heavy metals – concepts and applications. Chemosphere 91, 869–881 (2013). doi:10.1016/j.chemosphere.2013.01.075 4. S. Amanifar, N. Aliasgharzad, M. Toorchi, M. Zarei, Lead phytotoxicity on some plant growth parameters and proline accumulation in mycorrhizal tomato (Lycopersicon esculentum L.). Int. J. Biosci. 4(10), 80–88 (2014). doi:10.12692/ijb/4.10.80-88 5. A.V. Barker, D.J. Pilbeam, Handbook of plant nutrition (Taylor & Francis Group, Boca Raton, 2010) 6. V.N. Bashkin, N.S. Kasimov, Biogeochemistry (Scientific World, Moscow, 2004) 7. Yu.V. Bielyk, V.M. Savosko, Yu.V. Lykholat, Taxonomic composition and synanthropic characteristic of woody plant community on Petrovsky waste rock dumps (Kryvorizhzhya). Ecological Bulletin of Kryvyi Rih District 4, 104–113 (2019). doi:10.31812/eco-bulletin-krd.v4i0.2565 8. Yu.M. Dmytruk, M.A. Berbets, Fundamentals of Biogeochemistry (Book-XXI, Chernivtsi, 2009) 9. V.V. Dobrovolskiy, Fundamentals of Biogeochemistry (Academy, Moscow, 2003) 10. A. Emamverdian, Y. Ding, F. Mokhberdoran, Y. Xie, Heavy Metal Stress and Some Mechanisms of Plant Defense Response. Sci. World J. 2015, 1–18 (2015). doi:10.1155/2015/756120 11. D. Gjorgieva-Ackova, Heavy metals and their general toxicity for plants. Plant Sci. Today 5(1), 14– 18 (2018). doi: 10.14719/pst.2018.5.1.355 12. A. Kabata-Pendias, Trace elements in soils and plants (Taylor and Francis Group, Boca Raton, 2011) 13. V. Katrin, How plants cope with heavy metals. Bot Stud. 55, 35 (2014). doi:10.1186/1999-3110-55-35 14. S. Kivinen, Sustainable post-mining land use: are closed metal mines abandoned or re-used space? Sustainability 9, 1705 (2017). doi:10.3390/su9101705 15. F.J.M. Maathuis, Physiological functions of mineral macronutrients. Curr. Opin. Plant Biol. 12, 250–258 (2009). doi:10.1016/j.pbi.2009.04.00316. S.E. Macdonald, S.M. Landhausser, J. Skousen, J. Franklin, J. Frouz, S. Hall, D. Jacobs, S. Quideau, Forest restoration following surface mining disturbance: challenges and solutions. New Forests 46, 703–732 (2015). doi:10.1007/s11056-015-9506- 4 17. J.H. McDonald, Handbook of biolological statistics. (Sparky house publishing, Baltimore, 2014) 18. M. Pietrzykowski, Tree species selection and reaction to mine soil reconstructed at reforested post-mine sites: Central and eastern European experiences. Ecol. Eng. 3, 100012 (2019). doi:10.1016/j.ecoena.2019.100012 19. V. Ranjan, P. Sen, D. Kumar, B. Singh, Reclamation and rehabilitation of waste dump by eco-restoration techniques at Thakurani iron ore mines in Odisha. Int. J. Miner. Process. 7(3), 253–264 (2016). doi:10.1504/IJMME.2016.078372 20. S.D. Rudyshyn, Fundamentals of Biogeochemistry (Academia, Kyiv, 2013) 21. V.M. Savosko, Yu.V. Lykholat, K.M. Domshyna, T.Y. Lykholat, Ecological and geological determination of trees and shrubs’ dispersal on the devastated lands at Kryvorizhya. Journal of Geology, Geography and Geoecology 27(1), 116–130 (2018). doi:10.15421/111837 22. V.M. Savosko, Yu.V. Lykholat, Yu.V. Bielyk, T.Y. Lykholat, Ecological and geological determination of the initial pedogenesis on devastated lands in the Kryvyi Rih Iron Mining & Metallurgical District (Ukraine). Journal of Geology, Geography and Geoecology 28(4), 738–746 (2019). doi:10.15421/111969 23. J. Skousen, C.E. Zipper, Post-mining policies and practices in the Eastern USA coal region. International journal of coal science & technology 1(2), 135–151 (2014). doi:10.1007/s40789-014- 0021-6 24. D.K. Tripathi, V.P. Singh, D.K. Chauhan, S.M. Prasad, N.K. Dubey, Role of macronutrients in plant growth and acclimation: recent advances and future prospective, in Improvement of crops in the era of climatic changes, ed by. P. Ahmad et al., vol 2 (Springer, New York, 2014), pp. 197–216. doi:10.1007/978-1-4614-8824-8_8 25. L. Versieren, S. Evers, H. Abd Elgawag, H. Asard, E. Smolders, Mixture toxicity of copper, cadmium, and zinc to barley seedlings is not explained by antioxidant and oxidative stress biomarkers. Environ Toxicol Chem. 36, 220–230 (2017). doi:10.1002/etc.3529 26. S. Yadav, Heavy metals toxicity in plants: an overview on the role of glutathione and phytochelatins. S. Afr. J. Bot. 76, 167–179 (2010). doi:10.1016/j.sajb.2009.10.007 27. F.K. Zengin, O. Munzuroglu, Effects of some heavymetals on content of chlorophyll, proline and some antioxidant chemicals in bean (Phaseolusvulgaris L.) seedlings. Acta Biol. Crac. Ser. Bot. 47(2), 157–164 (2005) 28. B. Zhou, W. Yao, S. Wang, X. Wang, T. Jiang, The metallothionein gene TaMT3 from Tamarix androssowii confers Cd2+ tolerance in Tobacco. Int. J. Mol. Sci. 15(6), 10398–10409 (2014). doi:10.3390/ijms150610398 29. C.E. Zipper, J. Burger, J.G. Skousen, P.N. Angel, C.D. Barton, V. Davis, J. Franklin, Restoring forests and associated ecosystem services on appalachian coal surface mines. Environ. Management 47, 751– 765 (2011). doi:10.1007/s00267-011-9670-z 30. J. Zivkovic, S. Razic, J. Arsenijevic, Z. Maksimovi, Heavy metal contents in Veronica species and soil from mountainous areas in Serbia. J. Serb. Chem. Soc. 77(7), 959–970 (2012). doi:10.2298/JSC111225221Z 31. M. Zika, K.H. Erb, The global loss of net primary production resulting from human-induced soil degradation in drylands. Ecol. Econ. 69, 310–318 (2009). doi:10.1016/j.ecolecon.2009.06