Description:
1. G.V. Lutsenko, L.V. Kozulya, Analiz osoblyvostey
vprovadzhennya problemno-oriyentovanoho
navchannya u systemi vyshchoyi osvity Ukrayiny
(Analysis of peculiarities of implementation of
problem-oriented education in the higher education
system of Ukraine). Visn. Chernihiv. nat. ped. un.
Ped. Sciences. 138, 91–95 (2016)
2. V.S. Kruglyk, V.V. Osadchyi, Developing
Competency in Programming among Future
Software Engineers. Integration of Education 23(4),
587–606 (2019)
3. A.V. Spivakovskiy, N.A. Kushnir, N.V. Valko,
M.A. Vinnyk, ICT Advanced Training of University
Teachers. CEUR Workshop Proceedings 1844
(2017)
4. P.I. Fedoruk, Vykorystannya intelektualʹnykh
ahentiv dlya intensyfikatsiyi protsesu navchannya
(Use of intelligent agents to intensify the education
process). Shtuchnyy intelekt 3, 379–384 (2004)
5. R.V. Streltsov, L.V. Slavinskaya, Iskusstvennyy
intellekt v obrazovanii (Artificial intelligence in
education). (DonNTU, Donetsk, 2010)
6. O.D. Humennyi, Kontseptsiya proektuvannya smartkompleksiv navchalʹnykh dystsyplin dlya zakladiv
profesiynoyi (profesiyno-tekhnichnoyi) osvity (The
concept of designing smart-complexes of
educational disciplines for institutions of vocational
(vocational-technical) education). Teoriya i
metodyka profesiynoyi osvity 2 (18), 100–112
(2018)
7. V.V. Osadchyi, V.S. Kruglik, D.O. Bukreiev,
Rozrobka prohramnoho zasobu dlya
prohnozuvannya vstupu abituriyentiv do zakladiv
vyshchoyi osvity (Development of a software tool
for predicting admission of students to higher
education institutions). Ukrainian Journal of
Educational Studies and Information Technology
6(3), 55–69 (2018)
8. A.G. Molibog, Programmed training: Questions of
the scientific organization of pedagogical work
(1967)
9. A.M. Kuh, Dissertation, National Pedagogical
Dragomanov University, 2018
10. P.D. Wasserman, Neural Computing: Theory and
practice (1989)
11. D.A. Gubanov, D.A. Novikov, A.G. Chkhartishvili,
Sotsial’nyye seti: modeli informatsionnogo
vliyaniya, upravleniya i protivoborstva (Social
networks: models of information influence,
management and confrontation). (Publishing house
of physical and mathematical literature, Moscow,
2010)
12. O. Markova, S. Semerikov, M. Popel, CoCalc as a
Learning Tool for Neural Network Simulation in the
Special Course “Foundations of Mathematic
Informatics”. CEUR Workshop Proceedings 2104,
338–403 (2018), http://ceur-ws.org/Vol2104/paper_204.pdf. Accessed 30 Nov 2018
13. S.O. Semerikov, I.O. Teplytskyi, Yu.V. Yechkalo,
A.E. Kiv, Computer Simulation of Neural Networks
Using Spreadsheets: The Dawn of the Age of
Camelot. CEUR Workshop Proceedings 2257, 122–
147 (2018), http://ceur-ws.org/Vol2257/paper14.pdf. Accessed 21 Mar 2019
14. S.O. Semerikov, I.O. Teplytskyi, Yu.V. Yechkalo,
O.M. Markova, V.N. Soloviev, A.E. Kiv, Computer
Simulation of Neural Networks Using Spreadsheets:
Dr. Anderson, Welcome Back. CEUR Workshop
Proceedings 2393, 833–848 (2019), http://ceurws.org/Vol-2393/paper_348.pdf. Accessed 30 Jun
2019
15. S. Semerikov, I. Teplytskyi, Yu. Yechkalo, O.
Markova, V. Soloviev, A. Kiv, Using spreadsheets
as learning tools for computer simulation of neural
networks. SHS Web of Conferences 75, 04018
(2020)
16. V. Osadchyi, N. Valko, L. Kuzmich, N. Abdullaeva,
Studies of impact of specialized STEM training on
choice further education. SHS Web of Conferences
75, 04014 (2020)
17. D. Bukreiev, Neuro-network technologies as a mean
for creating individualization conditions for students
learning. SHS Web of Conferences 75, 04013
(2020)