Description:
1. Akbar, S., Rao, K.N., Chandulal, J.A.: Intrusion detection system methodologies based on
data analysis. International Journal of Computer Applications 5(2), 10–20 (2010).
doi:10.5120/892-1266
2. Bahrololum, M., Salahi, E., Khaleghi, M.: An improved intrusion detection technique based
on two strategies using decision tree and neural network. Journal of Convergence
Information Technology 4(4), 96–101 (2009)
3. Chebrolu, S., Abraham, A., Thomas, J.P.: Feature deduction and ensemble design of
intrusion detection systems. Computers & Security 24(4), 295–307 (2005).
doi:10.1016/j.cose.2004.09.008
4. Dierbach Ch.: Python as a first programming language. Journal of Computing Sciences in
Colleges 29(6), 153–154 (2014)
5. García-Teodoro, P., Díaz-Verdejoa, J., Maciá-Fernández, G., Vázquez, E.: Anomaly-based
network intrusion detection: Techniques, systems and challenges. Computers & Security
28(1–2), 18–28 (2009). doi:10.1016/j.cose.2008.08.003
6. Imamverdiyev, Y.N., Sukhostat, L.V.: Obnaruzhenie anomalii v setevom trafike na osnove
informativnykh priznakov (Network traffic anomalies detection based on informative
features). Radio electronics, computer science, control 3, 113–120 (2017)
doi:10.15588/1607-3274-2017-3-13
7. KDD Cup 1998 Data. http://kdd.ics.uci.edu//databases/kddcup98/kddcup98.html (1999).
Accessed 21 Mar 2019
8. Kirichek, G., Kurai, V.: Implementation quadtree method for comparison of images. In:
14th International Conference on Advanced Trends in Radioelectronics,
Telecommunications and Computer Engineering (TCSET), pp. 129–132. IEEE (2018)
doi:10.1109/TCSET.2018.8336171
9. Kirichek, G., Tymoshenko, V., Rudkovskyi, O., Hrushko, S.: Decentralized System for Run
Services. CEUR Workshop Proceedings 2353, 860–872 (2019)
10. Kohonen, T.: Self-Organizing Maps. Springer-Verlag, Berlin, Heidelberg (2001).
doi:10.1007/978-3-642-56927-2
11. Mukkamala, S., Janoski, G., Sung, A.: Intrusion detection using neural networks and
support vector machines. In: Proceedings of the 2002 International Joint Conference on
Neural Networks. IJCNN’02. Honolulu, HI, USA, pp. 1702–1707 (2002).
doi:10.1109/IJCNN.2002.1007774
12. Ritter, H., Martinetz, T., Schulten, K., Barsky, D., Tesch, M., Kates, R.: Neural
Computation and Self-Organizing Maps: An Introduction. Addison-Wesley, Reading
(1992)
13. Rueckstiess T.: Python PyBrain package v0.3, pybrain.structure.modules.kohonen module
source code :: PyDoc.net. http://pydoc.net/PyBrain/0.3/pybrain.structure.modules.kohonen
(2009). Accessed 17 Aug 2019
14. Sabhnani, M., Serpen, G.: Application of Machine Learning Algorithms to KDD Intrusion
Detection Dataset within Misuse Detection Context. In: Proceedings of the International
Conference on Machine Learning; Models, Technologies and Applications. MLMTA'03,
June 23–26, 2003, Las Vegas, Nevada, USA, pp. 209–215. CSREA Press (2003)
15. Salnik, S.V., Salnyk, V.V., Symonenko, O.A., Sova, O.Ya.: Metod vyiavlennia vtorhnen v
mobilni radiomerezhi na osnovi neironnykh merezh (Method of intrusion detection in
mobile radio networks on the basis of neurals networks). Science and Technology the Air
Force of Ukraine 4(21), 82–90 (2015)
16. Semerikov, S.O., Teplytskyi, I.O., Yechkalo, Yu.V., Kiv, A.E.: Computer Simulation of
Neural Networks Using Spreadsheets: The Dawn of the Age of Camelot. In: Kiv, A.E.,
Soloviev, V.N. (eds.) Proceedings of the 1st International Workshop on Augmented Reality
in Education (AREdu 2018), Kryvyi Rih, Ukraine, October 2, 2018. CEUR Workshop
Proceedings 2257, 122–147. http://ceur-ws.org/Vol-2257/paper14.pdf (2018). Accessed 30
Nov 2018
17. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the KDD CUP
99 data set. In: 2009 IEEE Symposium on Computational Intelligence for Security and
Defense Applications, pp. 1–6. IEEE (2009). doi:10.1109/CISDA.2009.5356528
18. Zhang, Z., Manikopoulos, C.: Neural networks in statistical anomaly intrusion detection.
Neural network world 11(3), 305–316 (2001)