Description:
1. H. Abelson, G.J. Sussman, J. Sussman, Structure and
Interpretation of Computer Programs, 2nd edn. (MIT
Press, Cambridge, 1996)
2. T.H. Abraham, (Physio)logical circuits: The
intellectual origins of the McCulloch-Pitts neural
networks. Journal of the History of the Behavioral
Sciences. 38(1), 3–25 (2002). doi:10.1002/jhbs.1094
3. E. Anderson, The Species Problem in Iris. Annals of
the Missouri Botanical Garden. 23(3), 457–
469+471–483+485–501+503–509 (1936).
doi:10.2307/2394164.
4. E. Anderson, Plants, Man and Life (University of
California Press, Boston, 1952)
5. E. Anderson, Bulletin of the American Iris Society.
59, 2–5 (1935)
6. E. Anderson, The Problem of Species in the Northern
Blue Flags, Iris versicolor L. and Iris virginica L.
Annals of the Missouri Botanical Garden. 15(3),
241–332 (1928). doi:10.2307/2394087
7. A.S. Ayed, Master thesis, Memorial University, 1997
8. J.J. Buergermeister, in Restructuring Training and
Education through Technology, ed. by D.W. Dalton.
32nd Annual Conference of the Association for the
Development of Computer-Based Instructional
Systems, San Diego, California, October 29-
November 1, 1990. (ADCIS International,
Columbus, 1990), pp. 214–220
9. H. Chernoff, Journal of the American Statistical
Association. 68(342), 361–368 (1973)
10. J.D. Cowan in Talking nets: An oral history of neural
networks, ed. by J.A. Anderson, E. Rosenfeld (MIT
Press, Cambridge, 1998), pp. 97–124
11. P. Cull, The mathematical biophysics of Nicolas
Rashevsky. BioSystems. 88(3), 178–184 (2007).
doi:10.1016/j.biosystems.2006.11.003
12. R.C. Eberhart, R.W. Dobbins, in Neural Network PC
Tools: A Practical Guide, ed. by R.C. Eberhart, R.W.
Dobbins (Academic Press, San Diego, 1990), pp. 9–
34
13. R.A. Fisher, The Use of Multiple Measurements in
Taxonomic Problems. Annals of Eugenics. 7(2),
179–188 (1936). doi:10.1111/j.1469-
1809.1936.tb02137.x
14. R.S. Freedman, R.P. Frail, F.T. Schneider, B.
Schnitta, in Proceedings First International
Conference on Artificial Intelligence Applications on
Wall Street, Institute of Electrical and Electronics
Engineers, New York, 9–11 Oct. 1991
15. T. Hegazy, A. Ayed, Neural Network Model for
Parametric Cost Estimation of Highway Projects.
Journal of Construction Engineering and
Management. 124(3), 210–218 (1998).
doi:10.1061/(ASCE)0733-9364(1998)124:3(210)
16. T.T. Hewett, Teaching Students to Model Neural
Circuits and Neural Networks Using an Electronic
Spreadsheet Simulator. Behavior Research Methods, Instruments, & Computers. 17(2), 339–344 (1985).
doi:10.3758/BF03214406
17. T.T. Hewett, Using an Electronic Spreadsheet
Simulator to Teach Neural Modeling of Visual
Phenomena. (Drexel University, Philadelphia, 1985)
18. A.S. Householder, H.D. Landahl, Mathematical
Biophysics of the Central Nervous System (Principia
Press, Bloomington, 1945)
19. A.S. Householder, A neural mechanism for
discrimination: II. Discrimination of weights.
Bulletin of Mathematical Biophysics. 2(1), 1–13
(1940). doi:10.1007/BF02478027
20. A.S. Householder, A theory of steady-state activity in
nerve-fiber networks I: Definitions and Preliminary
Lemmas. Bulletin of Mathematical Biophysics. 3(2),
63–69 (1941). doi:10.1007/BF02478220
21. W. James, Psychology (Henry Holt and Company,
New York, 1892)
22. W. James, The Principles of Psychology (Henry Holt
and Company, New York, 1890)
23. S.J. Johnston, InfoWorld. 13(7), 14 (1991)
24. D.A. Kendrick, P.R. Mercado, H.M. Amman,
Computational Economics (Princeton University
Press, Princeton, 2006)
25. H.D. Landahl, W.S. McCulloch, W. Pitts, A
statistical consequence of the logical calculus of
nervous nets. Bulletin of Mathematical Biophysics.
5(4), 135–137 (1943). doi:10.1007/BF02478260
26. H.D. Landahl, R. Runge, Outline of a matrix calculus
for neural nets. Bulletin of Mathematical Biophysics.
8(2), 75–81 (1946). doi:10.1007/BF02478464
27. H.D. Landahl, A matrix calculus for neural nets: II.
Bulletin of Mathematical Biophysics. 9(2), 99–108
(1947). doi:10.1007/BF02478296
28. O. Markova, S. Semerikov, M. Popel, CoCalc as a
Learning Tool for Neural Network Simulation in the
Special Course “Foundations of Mathematic
Informatics”. (CEUR Workshop Proceedings, 2018),
http://ceur-ws.org/Vol-2104/paper_204.pdf.
Accessed 30 Nov 2018
29. O.M. Markova, S.O. Semerikov, A.M. Striuk, H.M.
Shalatska, P.P. Nechypurenko, V.V. Tron,
Implementation of cloud service models in training
of future information technology specialists. (CEUR
Workshop Proceedings, 2019), http://ceurws.org/Vol-2433/paper34.pdf. Accessed 10 Sep 2019
30. W.C. McCulloch, W. Pitts, A logical calculus of the
ideas immanent in nervous activity. Bulletin of
Mathematical Biophysics. 5(4), 115–133 (1943).
doi:10.1007/BF02478259
31. T.M. Mitchell, Key Ideas in Machine Learning.
http://www.cs.cmu.edu/%7Etom/mlbook/keyIdeas.p
df. Accessed 28 Jan 2019
32. O.S. Permiakova, S.O. Semerikov, Zastosuvannia
neironnykh merezh u zadachakh prohnozuvannia
(The use of neural networks in forecasting problems),
in Materials of the International Scientific and
Practical Conference “Young scientist of the XXI
century”, KTU, Kryviy Rih, 17–18 November 2008
33. W. Pitts, W.S. McCulloch, How we know universals
the perception of auditory and visual forms. Bulletin
of Mathematical Biophysics. 9(3), 127–147 (1947).
doi:10.1007/BF02478291
34. W. Pitts, A general theory of learning and
conditioning: Part I. Psychometrika. 8(1), 1–18
(1943). doi:10.1007/BF02288680
35. W. Pitts, A general theory of learning and
conditioning: Part II. Psychometrika. 8(2), 131–140
(1943). doi:10.1007/BF02288697
36. W. Pitts, Some observations on the simple neuron
circuit. Bulletin of Mathematical Biophysics. 4(3),
121–129 (1942). doi:10.1007/BF02477942
37. W. Pitts, The linear theory of neuron networks: The
dynamic problem. Bulletin of Mathematical
Biophysics. 5(1), 23–31 (1943).
doi:10.1007/BF02478116
38. W. Pitts, The linear theory of neuron networks: The
static problem. Bulletin of Mathematical Biophysics.
4(4), 169–175 (1942). doi:10.1007/BF02478112
39. N. Rashevsky, Mathematical biophysics of
abstraction and logical thinking. Bulletin of
Mathematical Biophysics. 7(3), 133–148 (1945).
doi:10.1007/BF02478314
40. N. Rashevsky, Outline of a physico-mathematical
theory of excitation and inhibition. Protoplasma.
20(1), 42–56 (1933). doi:10.1007/BF02674811
41. N. Rashevsky, Some remarks on the boolean algebra
of nervous nets in mathematical biophysics. Bulletin
of Mathematical Biophysics. 7(4), 203–211 (1945).
doi:10.1007/BF02478425
42. N. Rashevsky, The neural mechanism of logical
thinking. Bulletin of Mathematical Biophysics. 8(1),
29–40 (1946). doi:10.1007/BF02478425
43. T.F. Rienzo, K.K. Athappilly, Introducing Artificial
Neural Networks through a Spread-sheet Model.
Decision Sciences Journal of Innovative Education.
10(4), 515–520 (2012). doi:10.1111/j.1540-
4609.2012.00363.x
44. M.A. Ruggiero, Cybernetic Trading Strategies:
Developing a Profitable Trading System with Stateof-the-Art Technologies (John Wiley & Sons, New
York, 1997)
45. M. Ruggiero, US Patent 5,241,620, 31 Aug 1993
46. K. Schwab, N. Davis, Shaping the Fourth Industrial
Revolution (Portfolio Penguin, London, 2018)
47. S.O. Semerikov, I.O. Teplytskyi, Yu.V. Yechkalo,
A.E. Kiv, Computer Simulation of Neural Networks
Using Spreadsheets: The Dawn of the Age of
Camelot. (CEUR Work-shop Proceedings, 2018),
http://ceur-ws.org/Vol-2257/paper14.pdf. Accessed
21 Mar 2019
48. S.O. Semerikov, I.O. Teplytskyi, Metodyka
uvedennia osnov Machine learning u shkilnomu kursi
informatyky (Methods of introducing the basics of Machine learning in the school course of
informatics), in Problems of informatization of the
educational process in institutions of general
secondary and higher education. Ukrainian scientific
and practical conference, Kyiv, October 09, 2018.
(Vyd-vo NPU imeni M. P. Drahomanova, Kyiv,
2018), pp. 18–20
49. A. Shimbel, A. Rapoport, A statistical approach to the
theory of the central nervous system. Bulletin of
Mathematical Biophysics. 10(2), 41–55 (1948).
doi:10.1007/BF02478329
50. G.L. Stebbins, Edgar Anderson 1897-1969. (National
Academy of Sciences, Washington, 1978)
51. G.J. Sussman, J. Wisdom, Structure and
interpretation of classical mechanics, 2nd edn. (MIT
Press, Cambridge, 2015)
52. I.O. Teplytskyi, O.I. Teplytskyi, A.P. Humeniuk,
New computer technology. 6, 67–68 (2008)
53. I.O. Teplytskyi, Elementy kompiuternoho
modeliuvannia (Elements of computer simulation),
2nd edn. (KSPU, Kryvyi Rih, 2010)
54. T. Wei, On matrices of neural nets. Bulletin of
Mathematical Biophysics. 10(2), 63–67 (1948).
doi:10.1007/BF02477433
55. P.J. Werbos, Maximizing long-term gas industry
profits in two minutes in Lotus using neural network
methods. Transactions on Systems Man and
Cybernetics. 19(2), 315–333 (1989).
doi:10.1109/21.31036
56. G. Young, On reinforcement and interference
between stimuli. Bulletin of Mathematical
Biophysics. 3(1), 5–12 (1941).
doi:10.1007/BF02478102
57. T. Zaremba, in Neural Network PC Tools: A
Practical Guide, ed. by R.C. Eberhart, R.W. Dobbins
(Academic Press, San Diego, 1990), pp. 251–283