Description:
[1] S. Zozor, O. Blanc, V. Jacquemet, N. Virag, J.-M.
Vesin, E. Pruvot, L. Kappenberger, C. Henriquez,
A numerical scheme for modeling wavefront
propagation on a monolayer of arbitrary geometry,
IEEE Transactions on Biomedical Engineering. 50(4)
(2003) 412–420. DOI:
https://doi.org/10.1109/TBME.2003.809505
[2] N. Kannathal, S. K. Puthusserypady, L. C. Min.
Complex dynamics of epileptic EEG. In Proc. of the
26th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society
(EMBS'04), 1 (2004) 604–607, San Fransisco, CA,
USA
[3] W. B. Arthur. Inductive reasoning and bounded
rationality. The American Economic Review, 4(2)
(1994) 406–411
[4] N. B. Tuma. Social Dynamics Models and methods.
Elsevier (1984)
[5] R. J. Shiller, S. Fischer, B. M. Friedman. Stock
prices and social dynamics. Brookings papers on
economic activity, 15(2) (1984) 457–510. DOI:
https://doi.org/10.2307/2534436
[6] M. Rajkovic. Extracting meaningful information
from financial data. Physica A, 287(3–4) (2000) 383–
395. DOI:
https://doi.org/10.1016/S0378-4371(00)00377-0
[7] V. I. Ponomarenko, M. D. Prokhorov. Extracting
information masked by the chaotic signal of a timedelay system. Physical Review E, 66(2) (2002) 026215.
DOI: https://doi.org/ 10.1103/PhysRevE.66.026215
[8] D. S. Broomhead, G. P. King. Extracting qualitative
dynamics from experimental data. Physica D,
20(2-3) (1986) 217–236. DOI:
https://doi.org/ 10.1016/0167-2789(86)90031-X
[9] R. Quian Quiroga, J. Arnhold, K. Lehnertz, P.
Grassberger. Kulback-Leibler and renormalized
entropies: Applications to electroencephalograms of
epilepsy patients. Physical Review E, 62(6) (2000)
8380–8386. DOI:
https://doi.org/ 10.1103/PhysRevE.62.8380
[10] O. A. Rosso, S. Blanco, J. Yordanova, V. Kolev,
A. Figliola, M. Schurmann, E. Basar. Wavelet entropy:
a new tool for analysis of short duration brain electrical
signals. Journal of neuroscience methods, 5(1) (2001)
65–75. DOI:
https://doi.org/10.1016/s0165-0270(00)00356-3
[11] T. Schreiber. Measuring information transfer.
Physical Review Letters, 85(2) (2000) 461–464. DOI:
https://doi.org/ 10.1103/PhysRevLett.85.461
[12] A. Wolf, J. B. Swift, H. L. Swinney, J. A. Vastano.
Determining Lyapunov exponents from a time series.
Physica D, 16(3) (1985) 285–317. DOI:
https://doi.org/ 10.1016/0167-2789(85)90011-9
[13] R. Nagarajan. Quantifying physiological data with
Lempel-Ziv complexity-certain issues. IEEE
Transactions on Biomedical Engineering, 49(11) (2002)
1371–1373. DOI:
https://doi.org/10.1109/TBME.2002.804582
[14] M. Aboy, R. Hornero, D. Abasolo, D. Alvarez.
Interpretation of the Lempel-Ziv complexity measure in
the context of biomedical signal analysis. IEEE
Transactions on Biomedical Engineering, 53(11) (2006)
2282–2288. DOI:
https://doi.org/10.1109/TBME.2006.883696
[15] S. Zozor, P. Ravier, O. Buttelli. On Lempel-Ziv
complexity for multidimensional data analysis. Physica
A, 345(1–2) (2005) 285–302. DOI:
https://doi.org/10.1016/j.physa.2004.07.025
[16] C. Vignat, J.-F. Bercher. Analysis of signals in the
Fisher-Shannon information plane. Physics Letters
A, 312(1–2) (2003) 27–33. DOI:
https://doi.org/10.1016/S0375-9601(03)00570-X
[17] S. Zozor, P. Ravier, and O. Buttelli, On LempelZiv complexity for multidimensional data analysis,
Physica A: Statistical Mechanics and its Applications,
345(1–2) (2005) 285–302. DOI:
https://doi.org/10.1016/j.physa.2004.07.025
[18] J.-L. Blanc, L. Pezard, and A. Lesne, Delay
independence of mutual-information rate of two
symbolic sequences, Phys. Rev. E, 84(3) (2011)
036214. DOI:
https://doi.org/10.1103/PhysRevE.84.036214
[19] E. Estevez-Rams, R. Lora Serrano, B. Aragon
Fernandez, I. Brito Reyes, On the non-randomness
of maximum Lempel Ziv complexity sequences of
finite size, Chaos, 23(2) (2013) 023118. DOI:
https://doi.org/10.1063/1.4808251 [20] S. Halvin, R. Cohen, Complex networks. Structure,
robustness and function. Cambridge University Press,
New York (2010)
http://ebooks.cambridge.org/ebook.jsf?bid=CBO97805
11780356
[21] H. Cao, Y. Li, Unraveling chaotic attractors by
complex networks and measurements of stock market
complexity, Chaos, 24 (2014) 013134. DOI:
http://dx.doi.org/10.1063/1.4868258
[22] V.N. Soloviev, A. Belinskiy, (2019) Complex
systems theory and crashes of cryptocurrency market.
In: Ermolayev V. (eds) Information and
Communication Technologies in Education, Research,
and Industrial Applications. ICTERI 2018.
Communications in Computer and Information Science,
vol. 1007. Springer, Cham, 2019, pp. 276–297. DOI:
https://doi.org/10.1007/978-3-030-13929-2_14
[23] G. Ricardo, R. Matsushita, S. Da Silva. The
relative efficiency of stockmarkets, Economics Bulletin.
7(6) (2008) 1–12.
[24] R. Giglio, R. Matsushita, A. Figueiredo, I. Gleria,
S. Da Silva, Algorithmic complexity theory and the
relative efficiency of financial markets, Europhysics
Letters. 84(4) (2008) 48005. DOI:
https://doi.org/10.1209/0295-5075/84/48005
[25] G. Ricardo, S. Da Silva. Ranking the stocks listed
on Bovespa according to their relative efficiency, Appl.
Math. Sci. 3(43) (2009) 2133–2142.
[26] S. Da Silva, C. Taufemback, R. Giglio,
Algorithmic complexity theory detects decreases in the
relative efficiency of stock markets in the aftermath of
the 2008 financial crisis, Economics Bulletin. 31(2)
(2011) 1631–1647.
[27] S. Da Silva, Financial market efficiency should be
gauged in relative rather than absolute terms, J.Stock
Forex Trad. 4(1) (2015). DOI:
http://dx.doi.org/10.4172/2168-9458.1000140
[28] A. Lempel and J. Ziv, On the complexity of finite
sequences, IEEE Transactions on InformationTheory.
22(1) (1976) 75–81. DOI:
https://doi.org/10.1109/TIT.1976.1055501
[29] O. Brandouy, D. Jean-Paul, L. Ma, H. Zenil,
Algorithmic complexity of financial motions, Research
in International Business and Finance, 30 (2014). DOI:
https://doi.org/10.1016/j.ribaf.2012.08.001
[30] P. Fiedor, Multiscale Analysis of the Predictability
of Stock Returns, Riscs, 3 (2015) 219–233, DOI:
https://doi.org/ 10.3390/risks3020219
[31] J. Gao, Y, Hou, F. Fan, F. Liu, Complexity
Changes in the US and China’s Stock
Markets: Differences, Causes, and Wider Social
Implications, Entropy, 22(75) (2020), DOI:
https://doi.org/10.3390/e22010075
[32] H. Cao, Y. Li, Unraveling chaotic attractors by
complex networks and measurements of stock market
Complexity, Chaos, 24 (2014) 0113134. DOI;
http://dx.doi.org/10.1063/1.4868258
[33] D. Stosic, D. Stosic, T. Ludermir, T. Stosic,
Exploring disorder and complexity in the
cryptocurrency space, Physica A: Statistical Mechanics
and its Applications, 525 (2019 548–556. DOI:
https://doi.org/10.1016/j.physa.2019.03.091
[34] V.Soloviev, A. Belinski, Methods of nonlinear
dynamics and the construction of
cryptocurrency crisis phenomena precursors. In:
Ermolayev V. (eds.) Proceedings of the 14th
International Conference on ICT in Education,
Research and Industrial Applications. Integration,
Harmonization and Knowledge Transfer. CEUR
Workshop Proceedings, 2014 (2018) 116–127.
http://ceur-ws.org/Vol-2104/paper_175.pdf
[35] A.N. Kolmogorov, Three approaches to the
quantitative definition of information, Int. J. Comp.
Math., 2(1-4) (1968) 157–168. DOI:
https://doi.org/10.1080/00207166808803030