Description:
[1] G. G. Malinetskii, "Theory of self-organization. On the cusp of IV
paradigm". Computers Research and Modeling, vol. 5, No 3, pp. 315
– 366, 2013.
[2] I. Prigogine, "From Being to Becoming: Time and Complexityin
thePhysical Sciences", – 1980. Publisher: W H Freeman & Co, p.
272.
[3] A. Barrat, M. Barthelemy and A. Vespignani, "Dynamical processes
on complex networks ", CambridgeUniversity Press, 347 p., 2008.
[4] S. Halvin and R. Cohen, "Complex networks. Structure, robustness
and function", CambridgeUniversity Press, 238 p. , 2010.
[5] R. Albert and A.-L. Barabasi, "Statistical Mechanics of Complex
Networks", Rev. Mod. Phys., vol.74, pp. 47 – 97, 2002.
[6] M. Newman, D. Watts and A.-L. Barabási, "The Structure and
Dynamics of Networks", Princeton University Press, p. 456, 2006.
[7] M. E. J. Newman, "The structure and function of complex networks",
SIAM Reviews, vol. 45(2), pp. 167 – 256, 2003.
[8] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez and D.-U. Hwang,
"Complex networks: Structure and dynamics", Phys. Rep., vol. 424,
pp. 175 – 209, 2006.
[9] G. Bianconi, "Interdisciplinary and physics challengesin network
theory", Europhysics Letters, vol. 11, No 5, pp. 1 – 7, 2015.
[10] V. Soloviev and A. Belinskij, “Complex Systems and Crashes of
Cryptocurrency Market”, In: Ermolayev, V., Suárez-Fgueroa, M.,
Yakovyna, V., Mayr, H., Nikitchenko, M., Spivakovsky, A. (eds.) on
ITC in Education, Research, and Industrial Applications. CCIS, vol
1007, pp 276-297. Springer, Cham, 2018.
[11] V. Soloviev and A. Belinskij, “Methods of nonlinear dynamics and
the construction of cryptocurrency crisis phenomena precursors”, In:
Ermolayev V., Suárez-Figueroa M.C. et al. (eds.) Proceedings of the
14th International Conference on ICT in Education, Research and
Industrial Applications. Integration, Harmonization and Knowledge
Transfer, Vol. II: Workshops, Kyiv, Ukraine, May 14-17, 2018.
CEUR Workshop Proceedings, pp. 116–127, 2014,.http://ceurws.org/Vol-2104/paper_175.pdf (2018). Accessed 30 Sep. 2018.
[12] S. Boccaletti, G. Bianconi, R. Criado et al., "The structure and
dynamics of multilayer networks", Phys. Rep., vol. 544, No 1. pp. 1–
122, 2014.
[13] L. Lacasa, B. Luque and F. Ballesteros et al. "From time series to
complex networks: The visibility graph", PNAS., vol. 105, No 13, pp.
4972 – 4975, 2008.
[14] R.V. Donner, M. Small, J.F. Donges and N. Marwan et al.,
"Recurrence-based time series analysis by means of complex network
methods ", Retrieved from http: arXiv:1010.6032v1 [nlin.CD] 25 Oct.
2010.
[15] V. Soloviev and A. Tuliakova “Graphodinamical Research Methods
for Complexity of Modern Stock Markets”, Neuro-Fazzy
Technologies of Modeling in Economy, No 5, pp. 152–179, 2016. [in
Ukrainian].
[16] V. Soloviev, A. Tuliakova and V. Solovieva, “Visibility graphs and
precursors of stock crashes”, Neuro-Fazzy Technologies of Modeling
in Economy, 2019, in press.
[17] B. Luque, L. Lacasa, F. Ballesteros and J. Luque, "Horizontal
visibility graphs: Exact results for random time series", Phys. Rev.E.,
vol. 80, p. 046103, 2009.
doi:https://doi.org/10.1103/PhysRevE.80.046103.
[18] L. Lacasa, V. Nicosia and V. Latora, "Network structure of
multivariate time series", Scientific Reports, pp. 1 – 9, 2015. doi:
10.1038/srep15508.
[19] L. Bargigli, G. Di Iasio, L. Infante, F. Lillo and F. Pierobon, "The
multiplex structure of interbank networks", Retrieved from http:
arXiv:1311.4798v1 [q-fin.GN] 19 Nov. 2013.
[20] N. Musmeci, V. Nicosia, T. Aste, T. Di Matteo and V. Latora, "The
multiplex dependency structure of financial markets", Complexity,–
pp. 1 – 13, 2017. doi: 10.1155/2017/9586064.
[21] S. Li and S. Wen, "Multiplex Networks of the Guarantee Market:
Evidence from China", Complexity, pp. 1 - 7, 2017.
doi:https://doi.org/10.1155/2017/9781890.
[22] C. Stephen, "Dynamic Phase and Group Detection in Pedestrian
Crowd Data Using Multiplex Visibility Graphs", Procedia Computer
Science, vol. 53, pp. 410 – 419, 2015.
[23] Stock market indices, Retrieved from: http:// finance.yahoo.com
[24] S.P. Chatzis, V. Siakoulis, A. Petropoulos, E. Stavroulakis and N.
Vlachogiannakis, “Forecasting stock market crisis events using deep
and statistical machine learning techniques”, Expert Systems With
Applications, vol. 112, pp. 353–371, 2018.