Description:
1. Halvin, S., Cohen, R.: Complex Networks: Structure, Robustness and Function. Cambridge
University Press, New York (2010)
2. Albert, R., Barabási, A.-L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74,
47–97 (2002)
3. Newman, M., Watts, D., Barabási, A.-L.: The Structure and Dynamics of Networks.
Princeton University Press, Princeton and Oxford (2006)
4. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–
256 (2003)
5. Nikolis, G., Prigogine, I.: Exploring Complexity: An Introduction. W. H. Freeman and
Company, New York (1989)
6. Andrews, B., Calder, M., Davis, R.: Maximumlikelihood estimation for a-stable
autoregressive processes. Ann. Stat. 37, 1946–1982 (2009)
7. Dassios, A., Li, L.: An economic bubble model and its first passage time. arXiv:1803.
08160v1 [q-fin.MF]. Accessed 15 Sept 2018
8. Tarnopolski, M.: Modeling the price of Bitcoin with geometric fractional Brownian motion:
a Monte Carlo approach. arXiv:1707.03746v3 [q-fin.CP]. Accessed 15 Sept 2018
9. Kodama, O., Pichl, L., Kaizoji, T.: Regime change and trend prediction for Bitcoin time
series data. In: CBU International Conference on Innovations in Science and Education,
Prague, pp. 384–388 (2017). www.cbuni.cz, www.journals.cz, https://doi.org/10.12955/
cbup.v5.954
10. Shah, D., Zhang, K.: Bayesian: regression and Bitcoin. arXiv:1410.1231v1 [cs.AI].
Accessed 15 Oct 2018 11. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the
22nd International Conference on Knowledge Discovery and Data Mining, pp. 785–794.
ACM, San Francisco (2016)
12. Alessandretti, L., ElBahrawy, A., Aiello, L.M., Baronchelli, A.: Machine learning the
cryptocurrency market. arXiv:1805.08550v1 [physics.soc-ph]. Accessed 15 Sept 2018
13. Guo, T., Antulov-Fantulin, N.: An experimental study of Bitcoin fluctuation using machine
learning methods. arXiv:1802.04065v2 [stat.ML]. Accessed 15 Sept 2018
14. Albuquerque, P., de Sá, J., Padula, A., Montenegro, M.: The best of two worlds: forecasting
high frequency volatility for cryptocurrencies and traditional currencies with support vector
regression. Expert Syst. Appl. 97, 177–192 (2018). https://doi.org/10.1016/j.eswa.2017.12.
004
15. Wang, M., et al.: A novel hybrid method of forecasting crude oil prices using complex
network science and artificial intelligence algorithms. Appl. Energy 220, 480–495 (2018).
https://doi.org/10.1016/j.apenergy.2018.03.148
16. Kennis, M.: A Multi-channel online discourse as an indicator for Bitcoin price and volume.
arXiv:1811.03146v1 [q-fin.ST]. Accessed 6 Nov 2018
17. Donier, J., Bouchaud, J.P.: Why do markets crash? Bitcoin data offers unprecedented
insights. PLoS One 10(10), 1–11 (2015). https://doi.org/10.1371/journal.pone.0139356
18. Bariviera, F.A., Zunino, L., Rosso, A.O.: An analysis of high-frequency cryptocurrencies
price dynamics using permutation-information-theory quantifiers. Chaos 28(7), 07551
(2018). https://doi.org/10.1063/1.5027153
19. Senroy, A.: The inefficiency of Bitcoin revisited: a high-frequency analysis with alternative
currencies. Financ. Res. Lett. (2018). https://doi.org/10.1016/j.frl.2018.04.002
20. Marwan, N., Schinkel, S., Kurths, J.: Recurrence plots 25 years later - gaining confidence in
dynamical transitions. Europhys. Lett. 101(2), 20007 (2013). https://doi.org/10.1209/0295-
5075/101/20007
21. Santos, T., Walk, S., Helic, D.: Nonlinear characterization of activity dynamics in online
collaboration websites. In: Proceedings of the 26th International Conference on World Wide
Web Companion, WWW 2017 Companion, Australia, pp. 1567–1572 (2017). https://doi.
org/10.1145/3041021.3051117
22. Di Francesco Maesa, D., Marino, A., Ricci, L.: Data-driven analysis of Bitcoin properties:
exploiting the users graph. Int. J. Data Sci. Anal. 6(1), 63–80 (2018). https://doi.org/10.1007/
s41060-017-0074-x
23. Bovet, A., Campajola, C., Lazo, J.F., et al.: Network-based indicators of Bitcoin bubbles.
arXiv:1805.04460v1 [physics.soc-ph]. Accessed 11 Sept 2018
24. Kondor, D., Csabai, I., Szüle, J., Pόsfai, M., Vattay, G.: Infferring the interplay of network
structure and market effects in Bitcoin. New J. Phys. 16, 125003 (2014). https://doi.org/10.
1088/1367-2630/16/12/125003
25. Wheatley, S., Sornette, D., Huber, T., et al.: Are Bitcoin bubbles predictable? Combining a
generalized Metcalfe’s law and the LPPLS model. arXiv:1803.05663v1 [econ.EM].
Accessed 15 Sept 2018
26. Gerlach, J-C., Demos, G., Sornette, D.: Dissection of Bitcoin’s multiscale bubble history
from January 2012 to February 2018. arXiv:1804.06261v2 [econ.EM]. Accessed 15 Sept
2018
27. Soloviev, V., Belinskiy, A.: Methods of nonlinear dynamics and the construction of
cryptocurrency crisis phenomena precursors. arXiv:1807.05837v1 [q-fin.ST]. Accessed 30
Sept 2018
28. Casey, M.B.: Speculative Bitcoin adoption/price theory. https://medium.com/
@mcasey0827/speculative-bitcoin-adoption-price-theory-2eed48ecf7da. Accessed 25 Sept
2018 29. McComb, K.: Bitcoin crash: analysis of 8 historical crashes and what’s next. https://blog.
purse.io/bitcoin-crash-e112ee42c0b5. Accessed 25 Sept 2018
30. Amadeo, K.: Stock market corrections versus crashes and how to protect yourself: how you
can tell if it’s a correction or a crash. https://www.thebalance.com/stock-market-correction3305863. Accessed 25 Sep 2018
31. Webber, C.L., Marwan, N. (eds.): Recurrence Plots and Their Quantifications: Expanding
Horizons. Proceedings of the 6th International Symposium on Recurrence Plots, Grenoble,
France, 17–19 June 2015, vol. 180, pp. 1–387. Springer, Heidelberg (2016). https://doi.org/
10.1007/978-3-319-29922-8
32. Marwan, N., Wessel, N., Meyerfeldt, U., Schirdewan, A., Kurths, J.: Recurrence plot based
measures of complexity and its application to heart rate variability data. Phys. Rev. E 66(2),
026702 (2002)
33. Zbilut, J.P., Webber Jr., C.L.: Embeddings and delays as derived from quantification of
recurrence plots. Phys. Lett. A 171(3–4), 199–203 (1992)
34. Webber Jr., C.L., Zbilut, J.P.: Dynamical assessment of physiological systems and states
using recurrence plot strategies. J. Appl. Physiol. 76(2), 965–973 (1994)
35. Bandt, C., Pompe, B.: Permutation entropy: a natural complexity measure for time series.
Phys. Rev. Lett. 88(17), 2–4 (2002)
36. Donner, R.V., Small, M., Donges, J.F., Marwan, N., et al.: Recurrence-based time series
analysis by means of complex network methods. arXiv:1010.6032v1 [nlin.CD]. Accessed 25
Oct 2018
37. Lacasa, L., Luque, B., Ballesteros, F., et al.: From time series to complex networks: the
visibility graph. PNAS 105(13), 4972–4975 (2008)
38. Burnie, A.: Exploring the interconnectedness of cryptocurrencies using correlation networks.
In: The Cryptocurrency Research Conference, pp. 1–29. Anglia Ruskin University,
Cambridge (2018)
39. Mantegna, R.N., Stanley, H.E.: An Introduction to Econophysics: Correlations and
Complexity in Finance. Cambridge University Press, Cambridge (2000)
40. Maslov, V.P.: Econophysics and quantum statistics. Math. Notes 72, 811–818 (2002)
41. Hidalgo, E.G.: Quantum Econophysics. arXiv:physics/0609245v1 [physics.soc-ph]. Accessed 15 Sept 2018
42. Saptsin, V., Soloviev, V.: Relativistic quantum econophysics - new paradigms in complex
systems modelling. arXiv:0907.1142v1 [physics.soc-ph]. Accessed 25 Sept 2018
43. Colangelo, G., Clurana, F.M., Blanchet, L.C., Sewell, R.J., Mitchell, M.W.: Simultaneous
tracking of spin angle and amplitude beyond classical limits. Nature 543, 525–528 (2017)
44. Rodriguez, E.B., Aguilar, L.M.A.: Disturbance-disturbance uncertainty relation: the
statistical distinguishability of quantum states determines disturbance. Sci. Rep. 8, 1–10
(2018)
45. Rozema, L.A., Darabi, A., Mahler, D.H., Hayat, A., Soudagar, Y., Steinberg, A.M.:
Violation of Heisenberg’s measurement-disturbance relationship by weak measurements.
Phys. Rev. Lett. 109, 100404 (2012)
46. Prevedel, R., Hamel, D.R., Colbeck, R., Fisher, K., Resch, K.J.: Experimental investigation
of the uncertainty principle in the presence of quantum memory. Nat. Phys. 7(29), 757–761
(2011)
47. Berta, M., Christandl, M., Colbeck, R., Renes, J., Renner, R.: The uncertainty principle in
the presence of quantum memory. Nat. Phys. 6(9), 659–662 (2010)
48. Landau, L.D., Lifshitis, E.M.: The Classical Theory of Fields. Course of Theoretical Physics.
Butterworth-Heinemann, Oxford (1975)
49. Soloviev, V., Saptsin, V.: Heisenberg uncertainty principle and economic analogues of basic
physical quantities. arXiv:1111.5289v1 [physics.gen-ph]. Accessed 15 Sept 2018 50. Soloviev, V.N., Romanenko, Y.V.: Economic analog of Heisenberg uncertainly principle
and financial crisis. In: 20-th International Conference SAIT 2017, pp. 32–33. ESC “IASA”
NTUU “Igor Sikorsky Kyiv Polytechnic Institute”, Ukraine (2017)
51. Soloviev, V.N., Romanenko, Y.V.: Economic analog of Heisenberg uncertainly principle
and financial crisis. In: 20-th International Conference SAIT 2018, pp. 33–34. ESC “IASA”
NTUU “Igor Sikorsky Kyiv Polytechnic Institute”, Ukraine (2018)
52. Wigner, E.P.: On a class of analytic functions from the quantum theory of collisions. Ann.
Math. 53, 36–47 (1951)
53. Dyson, F.J.: Statistical theory of the energy levels of complex systems. J. Math. Phys. 3,
140–156 (1962)
54. Mehta, L.M.: Random Matrices. Academic Press, San Diego (1991)
55. Laloux, L., Cizeau, P., Bouchaud, J.-P., Potters, M.: Noise dressing of financial correlation
matrices. Phys. Rev. Lett. 83, 1467–1470 (1999)
56. Plerou, V., Gopikrishnan, P., Rosenow, B., Amaral, L.A.N., Guhr, T., Stanley, H.E.:
Random matrix approach to cross correlations in financial data. Phys. Rev. E 65, 066126
(2002)
57. Shen, J., Zheng, B.: Cross-correlation in financial dynamics. EPL (Europhys. Lett.) 86,
48005 (2009)
58. Jiang, S., Guo, J., Yang, C., Tian, L.: Random matrix analysis of cross-correlation in energy
market of Shanxi, random matrix analysis of cross-correlation in energy market of Shanxi,
China. Int. J. Nonlinear Sci. 23(2), 96–101 (2017)
59. Urama, T.C., Ezepue, P.O., Nnanwa, C.P.: Analysis of cross-correlations in emerging
markets using random matrix theory. J. Math. Financ. 7, 291–307 (2017)
60. Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. 109, 1492
(1958)