Description:
1. Abelson, H., Sussman, G.J., Sussman, J.: Structure and Interpretation of Computer Programs. 2nd edn. MIT Press, Cambridge (1996)
2. Abraham, T.H.: (Physio)logical circuits: The intellectual origins of the McCulloch-Pitts
neural networks. Journal of the History of the Behavioral Sciences. 38(1), 3–25 (2002).
doi:10.1002/jhbs.1094
3. Ayed, A.S.: Parametric Cost Estimating of Highway Projects using Neural Networks. Master thesis, Memorial University (1997)
4. Buergermeister, J.J.: Using Computer Spreadsheets for Instruction in Cost Control Curriculum at the Undergraduate Level. In: Dalton, D.W. (ed.) Restructuring Training and Education through Technology, Proceedings of the 32nd Annual Conference of the Association
for the Development of Computer-Based Instructional Systems, San Diego, California, October 29-November 1, 1990, pp. 214–220. ADCIS International, Columbus (1990)
5. Cowan, J.D. Interview with J. A. Anderson and E. Rosenfeld. In: Anderson, J.A., Rosenfeld, E. (eds.) Talking nets: An oral history of neural networks, pp. 97–124. MIT Press,
Cambridge (1998)
6. Cull P.: The mathematical biophysics of Nicolas Rashevsky. BioSystems. 88(3), 178–184
(2007). doi:10.1016/j.biosystems.2006.11.003
7. Eberhart, R.C., Dobbins, R.W.: CHAPTER 1 – Background and History. In: Eberhart, R.C.,
Dobbins, R.W. (eds.) Neural Network PC Tools: A Practical Guide, pp. 9–34. Academic
Press, San Diego (1990)
8. Freedman, R.S., Frail, R.P., Schneider, F.T., Schnitta, B.: Expert Systems in Spreadsheets:
Modeling the Wall Street User Domain. In: Proceedings First International Conference on
Artificial Intelligence Applications on Wall Street, Institute of Electrical and Electronics
Engineers, New York, 9–11 Oct. 1991
9. Hegazy, T., Ayed, A.: Neural Network Model for Parametric Cost Estimation of Highway
Projects. Journal of Construction Engineering and Management. 124(3), 210–218 (1998).
doi:10.1061/(ASCE)0733-9364(1998)124:3(210)
10. Hewett, T.T.: Teaching Students to Model Neural Circuits and Neural Networks Using an
Electronic Spreadsheet Simulator. Behavior Research Methods, Instruments, & Computers.
17(2), 339–344 (1985). doi:10.3758/BF03214406
11. Hewett, T.T.: Using an Electronic Spreadsheet Simulator to Teach Neural Modeling of Visual Phenomena (Report No. MWPS-F-85-1). Drexel University, Philadelphia (1985)
12. Householder, A.S., Landahl, H.D.: Mathematical Biophysics of the Central Nervous System. Principia Press, Bloomington (1945)
13. Householder, A.S.: A neural mechanism for discrimination: II. Discrimination of weights.
Bulletin of Mathematical Biophysics. 2(1), 1–13 (1940). doi:10.1007/BF02478027
14. Householder, A.S.: A theory of steady-state activity in nerve-fiber networks III: The simple
circuit in complete activity. Bulletin of Mathematical Biophysics. 3(4), 137–140 (1941).
doi:10.1007/BF02477933
15. Householder, A.S.: A theory of steady-state activity in nerve-fiber networks IV. N circuits
with a common synapse. Bulletin of Mathematical Biophysics. 4(1), 7–14 (1942).
doi:10.1007/BF02477933
16. Householder, A.S.: A theory of steady-state activity in nerve-fiber networks I: Definitions
and Preliminary Lemmas. Bulletin of Mathematical Biophysics. 3(2), 63–69 (1941).
doi:10.1007/BF02478220 17. Householder, A.S.: A theory of steady-state activity in nerve-fiber networks II: The simple
circuit. Bulletin of Mathematical Biophysics. 3(3), 105–112 (1941).
doi:10.1007/BF02478168
18. Hryshchenko, N.V., Chernov, Ye.V., Semerikov, S.O.: Fizychni modeli v kursi “Osnovy
kompiuternoho modeliuvannia” (Physical models in the course “Fundamentals of computer
simulation”). In: Methodological and organizational aspects of the use of the INTERNET
network in the institutions of science and education (INTERNET – EDUCATION –
SCIENCE – 98), 1st international scientific and practical conference, Vinnytsia, 1998,
vol. 2, pp. 341–348. UNIVERSUM-Vinnytsia, Vinnytsia (1998)
19. James W.: Psychology. Henry Holt and Company, New York (1892)
20. James W.: The Principles of Psychology. Henry Holt and Company, New York (1890)
21. Johnston S.J.: Promised Land Comes Through With Braincel for Excel 3.0. InfoWorld.
13(7), 14 (1991)
22. Kendrick, D.A., Mercado P.R., Amman H.M.: Computational Economics. Princeton University Press, Princeton (2006)
23. Landahl, H.D., McCulloch, W.S., Pitts W.: A statistical consequence of the logical calculus
of nervous nets. Bulletin of Mathematical Biophysics. 5(4), 135–137 (1943).
doi:10.1007/BF02478260
24. Landahl, H.D., Runge, R.: Outline of a matrix calculus for neural nets. Bulletin of Mathematical Biophysics. 8(2), 75–81 (1946). doi:10.1007/BF02478464
25. Landahl, H.D.: A matrix calculus for neural nets: II. Bulletin of Mathematical Biophysics.
9(2), 99–108 (1947). doi:10.1007/BF02478296
26. McCulloch, W.C., Pitts, W.: A logical calculus of the ideas immanent in nervous activity.
Bulletin of Mathematical Biophysics. 5(4), 115–133 (1943). doi:10.1007/BF02478259
27. Mintii, I.S., Tarasov, I.V., Semerikov S.O.: Meta navchannia ta zmist kursu “Vstup do
prohramuvannia” dlia maibutnikh uchyteliv informatyky (The purpose of the teaching and
the contents of the course “Introduction in programming” for future computer science
teacher). Visnyk Cherkaskoho universytetu. Seriia pedahohichni nauky. 279, 57–63 (2013)
28. Mintii, I.S., Tarasov, I.V., Semerikov S.O.: Metodyka formuvannia u maibutnikh uchyteliv
informatyky kompetentnostei z prohramuvannia na prykladi temy “Ekspertna systema”
(Methods of forming of future informatics teachers competencies in programming by example the theme “Expert system”). Naukovyi chasopys NPU im. M. P. Drahomanova. Seriia #2. Kompiuterno-oriientovani systemy navchannia. 14 (21), 91–96 (2014)
29. Permiakova, O.S., Semerikov, S.O.: Zastosuvannia neironnykh merezh u zadachakh
prohnozuvannia (The use of neural networks in forecasting problems). In: Materials of the
International Scientific and Practical Conference “Young scientist of the XXI century”,
KTU, Kryviy Rih, 17–18 November 2008
30. Pitts, W., McCulloch, W.S.: How we know universals the perception of auditory and visual
forms. Bulletin of Mathematical Biophysics. 9(3), 127–147 (1947).
doi:10.1007/BF02478291
31. Pitts, W.: A general theory of learning and conditioning: Part I. Psychometrika. 8(1), 1–18
(1943). doi:10.1007/BF02288680
32. Pitts, W.: A general theory of learning and conditioning: Part II. Psychometrika. 8(2), 131–
140 (1943). doi:10.1007/BF02288697
33. Pitts, W.: Some observations on the simple neuron circuit. Bulletin of Mathematical Biophysics. 4(3), 121–129 (1942). doi:10.1007/BF02477942
34. Pitts, W.: The linear theory of neuron networks: The dynamic problem. Bulletin of Mathematical Biophysics. 5(1), 23–31 (1943). doi:10.1007/BF02478116 35. Pitts, W.: The linear theory of neuron networks: The static problem. Bulletin of Mathematical Biophysics. 4(4), 169–175 (1942). doi:10.1007/BF02478112
36. Polishchuk, O.P., Teplytskyi, I.O., Semerikov, S.O.: Systematychne navchannia modeliuvanniu v pidhotovtsi maibutnoho vchytelia (Systematic training simulation in training future teachers). In: Abstracts of the All-Ukrainian scientific and methodical workshop on the
Computer modeling in education, KSPU, Kryvyi Rih, 26 April 2006
37. Rapoport, A., Shimbel, A.: Steady states in random nets: I. Bulletin of Mathematical Biophysics. 10(4), 211–220 (1948). doi:10.1007/BF02477503
38. Rapoport, A.: Contribution to the probabilistic theory of neural nets: I. Randomization of
refractory periods and of stimulus intervals. Bulletin of Mathematical Biophysics. 12(2),
109–121 (1950). doi:10.1007/BF02478248
39. Rapoport, A.: Contribution to the probabilistic theory of neural nets: II. Facilitation and
threshold phenomena. Bulletin of Mathematical Biophysics. 12(3), 187–197 (1950).
doi:10.1007/BF02478318
40. Rapoport, A.: Contribution to the probabilistic theory of neural nets: III. Specific inhibition.
Bulletin of Mathematical Biophysics. 12(4), 317–325 (1950). doi:10.1007/BF02477902
41. Rapoport, A.: Contribution to the probabilistic theory of neural nets: IV. Various models
for inhibition. Bulletin of Mathematical Biophysics. 12(4), 327–337 (1950).
doi:10.1007/BF02477903
42. Rapoport, A.: Steady states in random nets: II. Bulletin of Mathematical Biophysics. 10(4),
221–226 (1948). doi:10.1007/BF02477504
43. Rashevsky, N.: Mathematical biophysics of abstraction and logical thinking. Bulletin of
Mathematical Biophysics. 7(3), 133–148 (1945). doi:10.1007/BF02478314
44. Rashevsky, N.: Outline of a physico-mathematical theory of excitation and inhibition. Protoplasma. 20(1), 42–56 (1933). doi:10.1007/BF02674811
45. Rashevsky, N.: Some remarks on the boolean algebra of nervous nets in mathematical biophysics. Bulletin of Mathematical Biophysics. 7(4), 203–211 (1945).
doi:10.1007/BF02478425
46. Rashevsky, N.: The neural mechanism of logical thinking. Bulletin of Mathematical Biophysics. 8(1), 29–40 (1946). doi:10.1007/BF02478425
47. Rienzo, T.F., Athappilly, K.K.: Introducing Artificial Neural Networks through a Spreadsheet Model. Decision Sciences Journal of Innovative Education. 10(4), 515–520 (2012).
doi:10.1111/j.1540-4609.2012.00363.x
48. Ruggiero M.A.: Cybernetic Trading Strategies: Developing a Profitable Trading System
with State-of-the-Art Technologies. John Wiley & Sons, New York (1997)
49. Ruggiero, M.: Embedding neural networks into spreadsheet applications. US Patent
5,241,620, 31 Aug 1993
50. Semerikov, S.O., Teplytskyi I.O.: Shtuchnyi intelekt v kursi informatyky pedahohichnoho
VNZ (Artificial intelligence in teaching informatics at pedagogical university). In: Materials of the 4th All-Ukrainian Conference of Young Scientists on the Information Technologies in Education, Science and Technology ITONT-2004, Cherkasy, 28-30 April 2004
51. Shimbel, A., Rapoport, A.: A statistical approach to the theory of the central nervous system. Bulletin of Mathematical Biophysics. 10(2), 41–55 (1948). doi:10.1007/BF02478329
52. Soloviov, V.M., Semerikov, S.O., Teplytskyi, I.O.: Instrumentalne zabezpechennia kursu
kompiuternoho modeliuvannia (Instrumental computer simulation courseware). Kompiuter
u shkoli ta simi. 4, 28–31 (2000)
53. Soloviov, V.M., Semerikov, S.O., Teplytskyi, I.O.: Osnovy kompiuternoho modeliuvannia
v serednii shkoli ta pedahohichnomu vuzi (Fundamentals of computer simulation in secondary school and higher pedagogical institutions). In: Collection of scientific and practical materials of the All-Ukrainian conference on the Pre-professional training of pupils in the
context of the implementation of the target comprehensive program “Teacher”, vol. 2,
pp. 53–56. Dnipropetrovsk (1997)
54. Sussman, G.J., Wisdom, J.: Structure and interpretation of classical mechanics. 2nd edn.
MIT Press, Cambridge (2015)
55. Teplytskyi, I., Semerikov, S.: Kompiuterne modeliuvannia mekhanichnykh rukhiv u
seredovyshchi elektronnykh tablyts (Computer modeling of mechanical movements in an
spreadsheets environment). Fizyka ta astronomiia v shkoli. 5, 41–46 (2002)
56. Teplytskyi, I.O., Semerikov, S.O.: Kompiuterna navchalna fizychna hra “Miaka posadka”
(Computer training physical game “Soft landing”). Naukovi zapysky: zbirnyk naukovykh
statei Natsionalnoho pedahohichnoho universytetu imeni M.P. Drahomanova. 53, 347–355
(2003)
57. Teplytskyi, I.O., Semerikov, S.O.: Kompiuterne modeliuvannia absoliutnykh ta vidnosnykh
rukhiv planet Soniachnoi systemy (Computer simulation of absolute and relative motions
of the planets the Solar system). Zbirnyk naukovykh prats Kamianets-Podilskoho natsionalnoho universytetu. Seriia pedahohichna. 13, 211–214 (2007)
58. Teplytskyi, I.O., Semerikov, S.O.: Modeliuvannia za dopomohoiu vypadkovykh chysel
(Simulation using random numbers). Zbirnyk naukovykh prats Kamianets-Podilskoho
natsionalnoho universytetu. Seriia pedahohichna. 17, 248–252 (2011)
59. Teplytskyi, I.O., Semerikov, S.O.: Na perekhresti ekolohii, matematyky, informatyky y
fizyky (At the intersection of ecology, mathematics, computer science and physics).
Zbirnyk naukovykh prats Kamianets-Podilskoho natsionalnoho universytetu. Seriia pedahohichna. 18, 34–37 (2012)
60. Teplytskyi, I.O.: Elementy kompiuternoho modeliuvannia (Elements of computer simulation). 2nd edn. KSPU, Kryvyi Rih (2010)
61. Teplytskyi, I.O.: Kompiuterne modeliuvannia v shkilnomu kursi informatyky (Computer
simulation in the school informatics course). Nyva znan. Informatsiini tekhnolohii v osviti.
1, 63–74 (1994)
62. Teplytskyi, I.O.: Vykorystannia elektronnykh tablyts u kompiuternomu modeliuvanni (Using spreadsheets in computer simulation). Kompiuter u shkoli ta simi. 2, 27–32 (1999)
63. Wei, T.: On matrices of neural nets. Bulletin of Mathematical Biophysics. 10(2), 63–67
(1948). doi:10.1007/BF02477433
64. Weinberg, A.M.: Gale J. Young. Physics Today. 45(1), 84 (1992). doi:10.1063/1.2809507
65. Werbos, P.J.: Maximizing long-term gas industry profits in two minutes in Lotus using
neural network methods. Transactions on Systems Man and Cybernetics. 19(2), 315–333
(1989). doi:10.1109/21.31036
66. Yechkalo, Yu.V., Teplytskyi, I.O.: Kompiuterne modeliuvannia doslidu Rezerforda v
seredovyshchi elektronnykh tablyts (Computer simulation of Rutherford's experiment in a
spreadsheet environment). In: Collection of scientific papers on the Modern technologies
in science and education, vol. 2, pp. 56–59. KSPU Publishing department, Kryvyi Rih
(2003)
67. Yechkalo, Yu.V.: Kompiuterne modeliuvannia brounivskoho rukhu (Computer simulation
of the Brownian motion). Pedahohichnyi poshuk. 5, 97–100 (2010)
68. Yechkalo, Yu.V.: Kompiuterne modeliuvannia rukhu zariadzhenoi chastynky v mahnitnomu poli v seredovyshchi elektronnykh tablyts (Computer simulation of motion of a
charged particle in a magnetic field in the environment of spreadsheets). Problemy suchasnoho pidruchnyka. 5(2), 66–72 (2004) 69. Yechkalo, Yu.V.: Kompiuterne modeliuvannia yak zasib realizatsii mizhpredmetnykh
zviazkiv kursu fizyky (Computer modeling as a means of realizing interdisciplinary connections in the physics course). Theory and methods of learning mathematics, physics, informatics. 5(2), 125–128 (2005)
70. Yechkalo, Yu.V.: Tekhnolohiia navchannia kompiuternoho modeliuvannia fizychnykh
protsesiv i yavyshch u starshii shkoli (Tech of learning of computer simulation of physical
processes and phenomena in school). In: Abstracts of the 6th All-Ukrainian scientific and
methodical workshop on the Computer modeling in education, Kryvyi Rih, 12 April 2013
71. Yechkalo, Yu.V.: Vybir seredovyshcha modeliuvannia fizychnykh protsesiv (Selection of
environment for simulation of physical processes). Theory and methods of learning mathematics, physics, informatics. 7(2), 11–14 (2008)
72. Yechkalo, Yu.V.: Vykorystannia Dokumentiv Google dlia orhanizatsii spilnoi roboty zi
stvorennia kompiuternoi modeli (The use of Google Docs to collaborate on the creation of
computer model). In: Abstracts of the 5th All-Ukrainian scientific and methodical workshop
on the Computer modeling in education, Kryvyi Rih, 6 April 2012
73. Young, G.: On reinforcement and interference between stimuli. Bulletin of Mathematical
Biophysics. 3(1), 5–12 (1941). doi:10.1007/BF02478102
74. Zaremba T.: CHAPTER 12 – Case Study III: Technology in Search of a Buck. In: Eberhart,
R.C., Dobbins, R.W. (eds.) Neural Network PC Tools: A Practical Guide, pp. 251–283.
Academic Press, San Diego (1990)