| dc.description |
1. H. Cui, R. Hensleigh, D. Yao, D. Maurya, P. Kumar, M. G. Kang, S. Priya, X.
R. Zheng, Three-dimensional printing of piezoelectric materials with designed
anisotropy and directional response, Nature Materials 18 (2019) 234,
https://doi.org/10.1038/s41563-018-0268-1
2. R. Gowdaman, A. Deepa, Y.K. Singla, Recent Advances in PVDF/CarbonBased Nanocomposite Fibers for Piezoelectric Energy Harvesting
Applications, Journal of Electronic Materials, 54 (2025) 24,
https://doi.org/10.1007/s11664-024-11589-6
3. F. Ali, W. Raza, X. Li, H. Gul, K.H. Kim, Piezoelectric energy harvesters for
biomedical applications, Nano Energy, 57 (2019) 879,
https://doi.org/10.1016/j.nanoen.2019.01.012
4. H. Liu, J. Zhong, C. Lee, S.W. Lee, L. Lin, A comprehensive review on
piezoelectric energy harvesting technology: materials, mechanisms, and
applications, Applied Physics Reviews, 5 (2018) 041306, https://doi.org/Article
041306, 10.1063/1.5074184
5. X. Wang, Piezoelectric nanogenerators-harvesting ambient mechanical energy
at the nanometer scale, Nano Energy, 1 (2012) 13,
https://doi.org/10.1016/j.nanoen.2011.09.001
6. C.R. Bowen, H.A. Kim, P.M. Weaver, S. Dunn, Piezoelectric and ferroelectric
materials and structures for energy harvesting applications, Energy and
Environmental Science, 7 (2014) 25, https://doi.org/10.1039/c3ee42454e
7. S.P. Beeby, M.J. Tudor, N.M. White, Energy harvesting vibration sources for
microsystems applications, Measurement Science and Technology, 17 (2006)
175, https://doi.org/10.1088/0957-0233/17/12/R01
8. Y. Sun, J. Chen, X. Li, Y. Lu, S. Zhang, Z. Cheng, Flexible piezoelectric
energy harvester/sensor with high voltage output over wide temperature range,
Nano Energy, 61 (2019) 337, https://doi.org/10.1016/j.nanoen.2019.04.055
9. D. Hu, M. Yao, Y. Fan, C. Ma, M. Fan, M. Liu, Strategies to achieve high
performance piezoelectric nanogenerators, Nano Energy, 55 (2019), 288,
https://doi.org/10.1016/j.nanoen.2018.10.053
10. S.K. Karan, S. Maiti, A.K. Agrawal, A.K. Das, A. Maitra, S. Paria, A. Bera, R.
Bera, L. Halder, A.K. Mishra, J.K. Kim, B.B. Khatua, Designing high energy
conversion efficient bio-inspired vitamin assisted single-structured based selfpowered piezoelectric/wind/acoustic multi-energy harvester with remarkable
power density, Nano Energy, 59 (2019) 169,
https://doi.org/10.1016/j.nanoen.2019.02.031
11.J. Yan, M. Liu, Y.G. Jeong, W. Kang, L. Li, Y. Zhao, N. Deng, B. Cheng, G.
Yang, Performance enhancements in poly(vinylidene fluoride)-based
piezoelectric nanogenerators for efficient energy harvesting, Nano Energy, 56
(2019) 662, https://doi.org/10.1016/j.nanoen.2018.12.010
12. D.W. Wang, J.L. Mo, X.F. Wang, H. Ouyang, Z.R. Zhou, Experimental and
numerical investigations of the piezoelectric energy harvesting via frictioninduced vibration, Energy Conversion and Management, 171 (2018) 1134,
https://doi.org/10.1016/j.enconman.2018.06.052
13. X.D. Xie, Q. Wang, Energy harvesting from a vehicle suspension system,
Energy, 86 (2015) 382, https://doi.org/10.1016/j.energy.2015.04.009
14.J. Chen, S.K. Oh, N. Nabulsi, H. Johnson, W. Wang, J.H. Ryou, Biocompatible
and sustainable power supply for self-powered wearable and implantable
electronics using III-nitride thin-film-based flexible piezoelectric generator,
Nano Energy, 57 (2019) 670, https://doi.org/10.1016/j.nanoen.2018.12.080
15.C. Fei, X. Liu, B. Zhu, D. Li, X. Yang, Y. Yang, Q. Zhou, AlN piezoelectric
thin films for energy harvesting and acoustic devices, Nano Energy, 51 (2018)
146, https://doi.org/10.1016/j.nanoen.2018.06.062
16. X. Guan, B. Xu, J. Gong, Hierarchically architected polydopamine modified
BaTiO3@P(VDF-TrFE) nanocomposite fiber mats for flexible piezoelectric
nanogenerators and self-powered sensors, Nano Energy, 70 (2020) 104516,
https://doi.org/10.1016/j.nanoen.2020.104516
17. K. Shi, B. Sun, X. Huang, P. Jiang, Synergistic effect of graphene nanosheet
and BaTiO3 nanoparticles on performance enhancement of electrospun PVDF
nanofiber mat for flexible piezoelectric nanogenerators, Nano Energy, 52
(2018) 153, https://doi.org/10.1016/j.nanoen.2018.07.053
18. H.S. Kim, J.H. Kim, J. Kim, A review of piezoelectric energy harvesting based
on vibration, International Journal of Precision Engineering and Manufacturing,
12 (6) (2011) 1129, https://doi.org/10.1007/s12541-011-0151-3
19. N. Wu, Q. Wang, X.D. Xie, Ocean wave energy harvesting with a piezoelectric
coupled buoy structure, Applied Ocean Research, 50 (2015) 110,
https://doi.org/10.1016/j.apor.2015.01.004
20. H. Madinei, H. Haddad Khodaparast, S. Adhikari, M.I. Friswell, Design of
MEMS piezoelectric harvesters with electrostatically adjustable resonance
frequency, Mechanical Systems and Signal Processing, 81 (2015) 360,
https://doi.org/10.1016/j.ymssp.2016.03.023
21.J. Sun, H. Guo, G. N. Schädli, K. Tu, S. Schär, F. W. M. R. Schwarze, G.
Panzarasa, J. Ribera, I. Burgert, Enhanced mechanical energy conversion with
selectively decayed wood, Science Advances, 7 (2021) eabd9138,
https://doi.org/10.1126/sciadv.abd9138
22.J. Siang, M.H. Lim, M. Salman Leong, Review of vibration-based energy
harvesting technology: mechanism and architectural approach, International
Journal of Energy Research, 42 (2018) 1866, https://doi.org/10.1002/er.3986.
23. D.S. Snyder, Vibrating transducer power supply for use in abnormal tire
condition warning systems, 1983.
https://patentimages.storage.googleapis.com/pdfs/US4384482.pdf
24. D.S. Snyder, Piezoelectric reed power supply for use in abnormal tire condition
warning systems, 1985,
https://patentimages.storage.googleapis.com/6b/d4/89/e908bb0163a9dd/US451
0484.pdf
25. X. Song, F. Hui, K. Gilmore, B. Wang, G. Jing, Z. Fan, E. Grustan-Gutierrez,
Y. Shi, L. Lombardi, S. A. Hodge, Enhanced piezoelectric effect at the edges of stepped molybdenum disulfide nanosheets, Nanoscale, 9 (2017) 6237,
https://doi.org/10.1039/C6NR09275F
26. Q. Xu, X. Gao, S. Zhao, Y. Liu, D. Zhang, K. Zhou, H. Khanbareh, W. Chen,
Y. Zhang, C. Bowen, Construction of Bio-Piezoelectric Platforms: From
Structures and Synthesis to Applications, Advanced Materials, 33 (2021)
2008452, https://doi.org/10.1002/adma.202008452
27. P. R. Tulip, S. J. Clark, Variational density-functional perturbation theory for
dielectrics and lattice dynamics, Physical Review B, 74 (2006) 64301,
https://doi.org/10.1103/PhysRevB.73.155114
28. P. R. Tulip, S. J. Clark, Dielectric and vibrational properties of amino acids,
The Journal Chemical Physics, 121 (2004) 5201,
https://doi.org/10.1063/1.1781615
29. Y. Zhang, Y. Bao, D. Zhang, C. R. Bowen, Porous PZT Ceramics with Aligned
Pore Channels for Energy Harvesting Applications, Journal of the American
Ceramic Society, 98 (2015) 2980, https://doi.org/10.1111/jace.13797
30. S. Priya, D.J. Inman, Energy Harvesting Technologies, Springer, (2009), ISBN
: 978-0-387-76463-4
31.I. L. Guy, S. Muensit, E. M. Goldys, Extensional piezoelectric coefficients of
gallium nitride and aluminum nitride, Applied Physics Letters, 75 (1999) 4133,
https://doi.org/10.1063/1.125560
32.R. E. Newnham, Properties of Materials: Anisotropy, Symmetry, Structure,
Properties of Materials: Anisotropy, Symmetry, Structure, Oxford University,
Oxford (2005). https://doi.org/10.1093/oso/9780198520757.001.0001
33.B. Zaarour, L. Zhu, C. Huang, X. Jin, H. Alghafari, J. Fang, T. Lin, A review
on piezoelectric fibers and nanowires for energy harvesting, Journal of
Industrial Textiles, 51 (2019) 297, https://doi.org/10.1177/1528083719870197
34. V. Jella, S. Ippili, J.H. Eom, S. Pammi, J.S. Jung, V.D. Tran, V.H. Nguyen, A.
Kirakosyan, S. Yun, D. Kim, M.R. Sihn, J. Choi, Y.J. Kim, H.J. Kim, S.G.
Yoon, A comprehensive review of flexible piezoelectric generators based on organic-inorganic metal halide perovskites, Nano Energy, 57 (2019) 74,
https://doi.org/10.1016/j.nanoen.2018.12.038
35. G. da Cunha Rodrigues, P. Zelenovskiy, K. Romanyuk, S. Luchkin, Y.
Kopelevich, A. Kholkin, Strong piezoelectricity in single-layer graphene
deposited on SiO2 grating substrates, Nature Communications, 6 (2015) 7572,
https://doi.org/10.1038/ncomms8572
36. S. Priya, H.C. Song, Y. Zhou, R. Varghese, A. Chopra, S.G. Kim, I. Kanno, L.
Wu, D.S. Ha, J. Ryu, R.G. Polcawich, A review on piezoelectric energy
harvesting: materials, methods, and circuits, Energy Harvesting and Systems, 4
(2019) 3, https://doi.org/10.1515/ehs-2016-0028
37. S. K. Ghosh, D. Mandal, Efficient natural piezoelectric nanogenerator:
Electricity generation from fish swim bladder, Nano Energy, 28 (2016) 356,
https://doi.org/10.1016/j.nanoen.2016.08.030
38. D. Denning, J. I. Kilpatrick, E. Fukada, N. Zhang, S. Habelitz, A. Fertala, M.
D. Gilchrist, Y. Zhang, S. A. M. Tofail, B. J. Rodriguez, Piezoelectric Tensor
of Collagen Fibrils Determined at the Nanoscale, ACS Biomaterials Science &
Engineering, 3 (2017) 929, https://doi.org/10.1021/acsbiomaterials.7b00183
39.J. Wang, C. Carlos, Z. Zhang, J. Li, Y. Long, F. Yang, Y. Dong, X. Qiu, Y.
Qian, X. Wang, Piezoelectric Nanocellulose Thin Film with Large-Scale
Vertical Crystal Alignment, ACS Applied Materials & Interfaces 12 (2020),
26399. https://doi.org/10.1021/acsami.0c05680
40.R. L. Horan, K. Antle, A. L. Collette, Y. Wang, J. Huang, J. E. Moreau, V.
Volloch, D. L. Kaplan, G. H. Altman, In vitro degradation of silk fibroin,
Biomaterials, 26 (2005) 3385,
https://doi.org/10.1016/j.biomaterials.2004.09.020
41. A. Stapleton, M. R. Noor, J. Sweeney, V. Casey, A. L. Kholkin, C. Silien, A.
A. Gandhi, T. Soulimane, S. A. M. Tofail, The direct piezoelectric effect in the
globular protein lysozyme, Applied Physics Letter, 111 (2017) 142902,
https://doi.org/10.1063/1.4997446
42. X. Dong, M. Ospeck, K. H. Iwasa, Piezoelectric Reciprocal Relationship of the
Membrane Motor in the Cochlear Outer Hair Cell, Biophysical Journal, 82
(2002) 1254, https://doi.org/10.1016/S0006-3495(02)75481-7
43. S. Beeby, N. White, Energy harvesting for autonomous systems, Artech House,
(2010) 285, https://www.researchgate.net/profile/StephenBeeby/publication/264873114_Energy_Harvesting_for_Autonomous_Systems/
links/5465da5f0cf2052b509fb3e8/Energy-Harvesting-for-AutonomousSystems.pdf
44. A.H. Rajabi, M. Jaffe, T.L. Arinzeh, Piezoelectric materials for tissue
regeneration: a review, Acta Biomaterialia, 24 (2015) 12,
https://doi.org/10.1016/j.actbio.2015.07.010
45. A. Jain, K.J. Prashanth, A.K. Sharma, A. Jain, R. P.n, Dielectric and
piezoelectric properties of PVDF/PZT composites: a review, Polymer
Engineering and Science, 55 (2015)1589, https://doi.org/10.1002/pen.24088
46. S. Guerin, T. A. M. Syed, D. Thompson, Deconstructing collagen
piezoelectricity using alanine-hydroxyproline-glycine building blocks,
Nanoscale, 10 (2018) 9653, https://doi.org/10.1039/C8NR01634H
47. D. Arnold, W. Kinsel, W.W. Clark, C. Mo, Exploration of new cymbal design
in energy harvesting, in: SPIE Proceedings, 7977 (2011),
https://doi.org/10.1117/12.880614
48. Y. Sugawara, K. Onitsuka, S. Yoshikawa, Q. Xu, R.E. Newnham, K. Uchino,
Metal-ceramic composite actuators, Journal of the American Ceramic Society,
75(1992) 996, https://doi.org/10.1111/j.1151-2916.1992.tb04172.x
49. L. Li, J. Xu, J. Liu, F. Gao, Recent progress on piezoelectric energy harvesting:
structures and materials, Advanced Composites and Hybrid Materials, 3 (2018)
478, https://doi.org/10.1007/s42114-018-0046-1
50. D. Farrar, K. Ren, D. Cheng, S. Kim, W. Moon, W. L. Wilson, J. E. West, S.
M. Yu, Permanent polarity and piezoelectricity of electro spun α-helical
poly(α-amino acid) fibers, Advanced Materials, 23 (2011) 3954,
https://doi.org/10.1002/adma.201101733
51. S. Wada, K. Yako, H. Kakemoto, T. Tsurumi, T. Kiguchi, Enhanced
piezoelectric properties of barium titanate single crystals with different
engineered-domain sizes, Journal of Applied Physics, 98 (2005) 014109,
https://doi.org/10.1063/1.1957130
52. H. Takahashi, Y. Numamoto, J. Tani, K. Matsuta, J. Qiu, S. Tsurekawa, Leadfree barium titanate ceramics with large piezoelectric constant fabricated by
microwave sintering, Japanese Journal of Applied Physics, 45 (2006) 30,
https://doi.org/10.1143/JJAP.45.L30
53. A. Polotai, K. Breece, E. Dickey, C. Randall, A. Ragulya, A novel approach to
sintering nanocrystalline barium titanate ceramics, Journal of the American
Ceramic Society, 88 (2005) 3008, https://doi.org/10.1111/j.1551-
2916.2005.00552.x
54. X.-H. Wang, X.Y. Deng, H.L. Bai, H. Zhou, W.G. Qu, L.T. Li, I.W. Chen,
Two-step sintering of ceramics with constant grain-size, II: BaTiO3 and Ni-CuZn ferrite, Journal of the American Ceramic Society, 89 (2006) 438,
https://doi.org/10.1111/j.1551-2916.2005.00728.x
55. T. Karaki, K. Yan, T. Miyamoto, M. Adachi, Lead-free piezoelectric ceramics
with large dielectric and piezoelectric constants manufactured from BaTiO3
nano-powder, Japanese Journal of Applied Physics, 46 (2007) 97-99,
https://doi.org/10.1143/JJAP.46.L97
56. T. Takenaka, H. Nagata, Current status and prospects of lead-free piezoelectric
ceramics, Journal of the European Ceramic Society, 25 (2005) 2693,
https://doi.org/10.1016/j.jeurceramsoc.2005.03.125
57. E. Fukada, I. Yasuda, On the Piezoelectric Effect of Bone, Journal of the
Physical Society of Japan, 12 (1975) 1158,
https://doi.org/10.1143/JPSJ.12.1158
58. F. Yang, J. Li, Y. Long, Z. Zhang, L. Wang, J. Sui, Y. Dong, Y. Wang, R.
Taylor, D. Ni, Wafer-scale heterostructured piezoelectric bio-organic thin
films, Science, 373 (2021) 337, https://doi.org/10.1126/science.abf2155
59. B. Jaffe, R.S. Roth, S. Marzullo, Piezoelectric properties of lead zirconate‐lead
titanate solid‐solution ceramics, Journal of Applied Physics, 25 (1954) 809,
https://doi.org/10.1063/1.1721741
60. D. Berlincourt, Piezoelectric ceramic compositional development, Journal of
the Acoustical Society of America, 91 (1992) 3034,
https://doi.org/10.1121/1.402938
61. D.J. Shin, S.J. Jeong, C.E. Seo, K.H. Cho, J.H. Koh, Multi-layered
piezoelectric energy harvesters based on PZT ceramic actuators, Ceramics
International, 41 (2015) 686, https://doi.org/10.1016/j.ceramint.2015.03.180
62. A.M. Flynn, S.R. Sanders, Fundamental limits on energy transfer and circuit
considerations for piezoelectric transformers, IIEEE Transactions on Power
Electronics, 17 (2002) 8, https://doi.org/10.1109/63.988662
63. Z. Yi, B. Yang, G. Li, J. Liu, X. Chen, X. Wang, C. Yang, High performance
bimorph piezoelectric MEMS harvester via bulk PZT thick films on thin
beryllium-bronze substrate, Applied Physics Letters, 111 (2017) 013902,
https://doi.org/10.1063/1.4991368
64. W.S. Kang, J.H. Koh, (1-x)Bi0.5Na0.5TiO3-xBaTiO3 lead-free piezoelectric
ceramics for energy-harvesting applications, Journal of the European Ceramic
Society, 35 (2015) 2057, https://doi.org/10.1016/j.jeurceramsoc.2014.12.036
65. D.J. Shin, J. Kim, J.H. Koh, Piezoelectric properties of (1-x)BZT-xBCT system
for energy harvesting applications, Journal of the European Ceramic Society,
38 (2018) 4395, https://doi.org/10.1016/j.jeurceramsoc.2018.05.022
66. K. Kapat, Q.T.H. Shubhra, M. Zhou, S. Leeuwenburgh, Piezoelectric nanobiomaterials for biomedicine and tissue regeneration, Advanced Functional
Materials, 44 (2020) 1909045, https://doi.org/10.1002/adfm.201909045
67. K. Ryan, J. Beirne, G. Redmond, J. I. Kilpatrick, J. Guyonnet, N.-V. Buchete,
A. L. Kholkin, B. J. Rodriguez, Nanoscale Piezoelectric Properties of SelfAssembled Fmoc-FF Peptide Fibrous Networks, ACS Applied Materials &
Interfaces, 7 (2015) 12702, https://doi.org/10.1021/acsami.5b01251
68. W. Wu, S. Bai, M. Yuan, Y. Qin, Z.L. Wang, T. Jing, Lead zirconate titanate
nanowire textile nanogenerator for wearable energy-harvesting and selfpowered devices, ACS Nano, 7 (2012) 6231,
https://doi.org/10.1021/nn3016585
69.J. Chun, N.R. Kang, J.Y. Kim, M.S. Noh, C.Y. Kang, D. Choi, S.W. Kim, Z.
Lin Wang, J. Min Baik, Highly anisotropic power generation in piezoelectric
hemispheres composed stretchable composite film for self-powered motion
sensor, Nano Energy, 11 (2015) 1,
https://doi.org/10.1016/j.nanoen.2014.10.010
70.J. Briscoe, S. Dunn, Piezoelectric nanogenerators - a review of nanostructured
piezoelectric energy harvesters, Nano Energy, 14 (2014) 15,
https://doi.org/10.1016/j.nanoen.2014.11.059
71. V. Nguyen, R. Zhu, K. Jenkins, R. Yang, Self-assembly of diphenylalanine
peptide with controlled polarization for power generation, Nature
Communications, 7 (2016) 13566, https://doi.org/10.1038/ncomms13566
72. M.G. Kang, W.S. Jung, C.Y. Kang, S.J. Yoon, Recent progress on PZT based
piezoelectric energy harvesting technologies, Actuators, 5 (2016),
https://doi.org/10.3390/act5010005
73. H. Kawai, The piezoelectricity of poly (vinylidene fluoride), Japanese journal
of applied physics, 8 (1969) 975, https://doi.org/10.1143/JJAP.8.975
74. A. Handelman, P. Beker, E. Mishina, S. Semin, N. Amdursky, G. Rosenman,
Ferroelectric Properties and Phase Transition in Dipeptide Nanotubes,
Ferroelectrics, 430 (2012) 84, https://doi.org/10.1080/00150193.2012.677721
75. S.B. Lang, S. Muensit, Review of some lesser-known applications of
piezoelectric and pyroelectric polymers,Applied Physics A: Materials Science
and Processing, 85 (2006) 125, https://doi.org/10.1007/s00339-006-3688-8
76. H. R. Leuchtag, Voltage-Sensitive Ion Channels: Biophysics of Molecular
Excitability, Berlin: Springer, 2008
77. S.K. Karan, D. Mandal, B.B. Khatua, Self-powered flexible Fe-doped
RGO/PVDF nanocomposite: an excellent material for a piezoelectric energy
harvester, Nanoscale, 7 (2015) 10655, https://doi.org/10.1039/c5nr02067k
78. M.E. Kiziroglou, E.M. Yeatman, Functional Materials for Sustainable Energy
Applications, Woodhead Publishing Series in Energy, (2012) 541,
https://doi.org/10.1533/9780857096371.4.539
79. Z. Pi, J. Zhang, C. Wen, Z. bin Zhang, D. Wu, Flexible piezoelectric
nanogenerator made of poly(vinylidenefluoride-co-trifluoroethylene) (PVDFTrFE) thin film, Nano Energy, 7 (2014) 33,
https://doi.org/10.1016/j.nanoen.2014.04.016
80. L. Jin, S. Ma, W. Deng, C. Yan, T. Yang, X. Chu, G. Tian, D. Xiong, J. Lu, W.
Yang, Polarization-free high-crystallization β-PVDF piezoelectric
nanogenerator toward self-powered 3D acceleration sensor, Nano Energy, 50
(2018) 632, https://doi.org/10.1016/j.nanoen.2018.05.068
81.J. Zhu, L. Jia, R. Huang, Electrospinning poly(l-lactic acid) piezoelectric
ordered porous nanofibers for strain sensing and energy harvesting, Journal of
Materials Science: Materials in Electronics, 28 (2017) 12080,
https://doi.org/10.1007/s10854-017-7020-5
82. M.M. Abolhasani, M. Naebe, K. Shirvanimoghaddam, H. Fashandi, H.
Khayyam, M. Joordens, A. Pipertzis, S. Anwar, R. Berger, G. Floudas, J.
Michels, K. Asadi, Thermodynamic approach to tailor porosity in piezoelectric
polymer fibers for application in nanogenerators, Nano Energy, 62 (2019) 594,
https://doi.org/10.1016/j.nanoen.2019.05.044
83.J. Fu, Y. Hou, X. Gao, M. Zheng, M. Zhu, Highly durable piezoelectric energy
harvester based on a PVDF flexible nanocomposite filled with oriented
BaTi2O5 nanorods with high power density, Nano Energy, 52 (2018) 391,
https://doi.org/10.1016/j.nanoen.2018.08.006
84. L. Csoka, I. C. Hoeger, O. J. Rojas, I. Peszlen, J. J. Pawlak, P. N. Peralta,
Piezoelectric Effect of Cellulose Nanocrystals Thin Films, ACS Macro Letters,
1 (2012) 867, https://doi.org/10.1021/mz300234a
85. L. Yang, S. Chi, S. Dong, F. Yuan, Z. Wang, J. Lei, L. Bao, J. Xiang, J. Wang,
Preparationand characterization of a novel piezoelectric nanogenerator based
on solubleand meltable copolyimide for harvesting mechanical energy, Nano
Energy, 67 (2020) 104220, https://doi.org/10.1016/j.nanoen.2019.104220
86. F. Liu, M. W. Urban, Recent advances and challenges in designing stimuliresponsive polymers, Progress in Polymer Science, 35 (2010) 3,
https://doi.org/10.1016/j.progpolymsci.2009.10.002
87.J. Anjana , K. J. Prashanth , K. S. Asheesh , J. Arpit , P.N. Rashmi, Dielectric
and piezoelectric properties of PVDF/PZT composites: A review, Polymer
Engineering & Science, 55 (2015) 1589, https://doi.org/10.1002/pen.24088
88. S. M. Joseph, S. Krishnamoorthy, R. Paranthaman, J. A. Moses, C.
Anandharamakrishnan, A review on source-specific chemistry, functionality,
and applications of chitin and chitosan, Carbohydrate Polymer Technologies
and Applications, 2 (2021) 100036,
https://doi.org/10.1016/j.carpta.2021.100036
89.C. Shuai, G. Liu, Y. Yang, W. Yang, C. He, G. Wang, Z. Liu, F. Qi, S. Peng,
Functionalized BaTiO3 enhances piezoelectric effect towards cell response of
bone scaffold, Colloids and Surfaces B: Biointerfaces, 185 (2020) 110587,
https://doi.org/10.1016/j.colsurfb.2019.110587
90.C. Shuai, G. Liu, Y. Yang, F. Qi, S. Peng, W. Yang, C. He, G. Wang, G. Qian,
A strawberry-like Ag-decorated barium titanate enhances piezoelectric and
antibacterial activities of polymer scaffold,Nano Energy, 74 (2020) 104825,
https://doi.org/10.1016/j.nanoen.2020.104825
91. H. Kim, S.M. Kim, H. Son, H. Kim, B. Park, J. Ku, J.I. Sohn, K. Im, J.E. Jang,
J.J. Park, O. Kim, S. Cha, Y.J. Park, Enhancement of piezoelectricity via
electrostatic effects on a textile platform, Energy and Environmental Science,
10 (2012) 8932, https://doi.org/10.1039/c2ee22744d
92. S. Siddiqui, D.I. Kim, E. Roh, L.T. Duy, T.Q. Trung, M.T. Nguyen, N.E. Lee,
A durable and stable piezoelectric nanogenerator with nanocomposite
nanofibers embedded in an elastomer under high loading for a self-powered sensor system, Nano Energy, 30 (2016) 434,
https://doi.org/10.1016/j.nanoen.2016.10.034
93. M.M. Alam, D. Mandal, Native cellulose microfiber-based hybrid piezoelectric
generator for mechanical energy harvesting utility, ACS Applied Materials and
Interfaces, 8 (2016) 1555, https://doi.org/10.1021/acsami.5b08168
94. Y. Zhang, C.K. Jeong, T. Yang, H. Sun, L.Q. Chen, S. Zhang, W. Chen, Q.
Wang, Bioinspired elastic piezoelectric composites for high-performance
mechanical energy harvesting, Journal of Materials Chemistry A, 30 (2018)
14546, https://doi.org/10.1039/c8ta03617a
95. D.-M. Shin, H. J. Han, W.-G. Kim, E. Kim, C. Kim, S. W. Hong, H. K. Kim,
J.-W. Oh, Y.-H. Hwang, Bioinspired piezoelectric nanogenerators based on
vertically aligned phage nanopillars, Energy & Environmental Science, 8
(2015) 3198, https://doi.org/10.1039/C5EE02611C
96. S. Maiti, S. Kumar Karan, J. Lee, A. Kumar Mishra, B. Bhusan Khatua, J. Kon
Kim, Bio-waste onion skin as an innovative nature-driven piezoelectric
material with high energy conversion efficiency, Nano Energy, 42 (2017) 282,
https://doi.org/10.1016/j.nanoen.2017.10.041
97. S.K. Ghosh, D. Mandal, Efficient natural piezoelectric nanogenerator:
electricity generation from fish swim bladder, Nano Energy, 28 (2016) 356,
https://doi.org/10.1016/j.nanoen.2016.08.030
98. S.K. Karan, S. Maiti, S. Paria, A. Maitra, S.K. Si, J.K. Kim, B.B. Khatua, A
new insight towards eggshell membrane as high energy conversion efficient
bio-piezoelectric energy harvester, Materials Today Energy, 9 (2018) 114,
https://doi.org/10.1016/j.mtener.2018.05.00
99. N.R. Alluri, N.P. Maria Joseph Raj, G. Khandelwal, V. Vivekananthan, S.J.
Kim, Aloe vera: a tropical desert plant to harness the mechanical energy by
triboelectric and piezoelectric approaches, Nano Energy, 73 (2020) 104767,
https://doi.org/10.1016/j.nanoen.2020.104767
100. A. Farahani, A. Zarei-Hanzaki, H. R. Abedi, L. Tayebi, E. Mostafavi,
Polylactic Acid Piezo-Biopolymers: Chemistry, Structural Evolution, Fabrication Methods, and Tissue Engineering Applications, Journal of
Functional Biomaterials, 12 (2021) 71, https://doi.org/10.3390/jfb12040071
101. S. Luo, J. Zhao, J. Zou, Z. He, C. Xu, F. Liu, Y. Huang, L. Dong, L. Wang,
H. Zhang, Self-standing polypyrrole/black phosphorus laminated film: 0cycling
stability, ACS Applied Materials and Interfaces, 10 (2018) 3538,
https://doi.org/10.1021/acsami.7b15458
102. X. Qi, Y. Zhang, Q. Ou, S.T. Ha, C.W. Qiu, H. Zhang, Y.B. Cheng, Q.
Xiong, Q. Bao, Photonics and optoelectronics of 2D metal-halide perovskites,
Small, 31 (2018), 1800682, https://doi.org/10.1002/smll.201800682
103. E. J. Curry, T. T. Le, R. Das, K. Ke, E. M. Santorella, D. Paul, M. T. Chorsi,
K. T. M. Tran, J. Baroody, E. R. Borges, Biodegradable nanofiber-based
piezoelectric transducer, Proceedings of the National Academy Sciences USA,
117 (2020) 214, https://doi.org/10.1073/pnas.1910343117
104. P. Wu, P. Chen, C. Xu, Q. Wang, F. Zhang, K. Yang, W. Jiang, J. Feng, Z.
Luo, Ultrasound-driven in vivo electrical stimulation based on biodegradable
piezoelectric nanogenerators for enhancing and monitoring the nerve tissue
repair, Nano Energy, 102 (2022) 107707,
https://doi.org/10.1016/j.nanoen.2022.107707
105. Y. M. Yousry, V. Wong, R. Ji, Y. Chen, S. Chen, X. Zhang, D. B. K. Lim,
L. Shen, K. Yao, Shear Mode Ultrasonic Transducers from Flexible
Piezoelectric PLLA Fibers for Structural Health Monitoring, Advanced
Functional Materials, 33 (2023) 2213582,
https://doi.org/10.1002/adfm.202213582
106. T. T. Le, E. J. Curry, T. Vinikoor, R. Das, Y. Liu, D. Sheets, K. T. M. Tran,
C. J. Hawxhurst, J. F. Stevens, J. N. Hancock, Piezoelectric Nanofiber
Membrane for Reusable, Stable, and Highly Functional Face Mask Filter with
Long-Term Biodegradability, Advanced Functional Materials, 32 (2022)
2113040, https://doi.org/10.1002/adfm.202113040
107. X. Jiang, A.V. Kuklin, A. Baev, Y. Ge, H. Ågren, H. Zhang, P.N. Prasad,
Two-dimensional MXenes: from morphological to optical, electric, and magnetic properties and applications, Physics Reports, 848 (2020) 1,
https://doi.org/10.1016/j.physrep.2019.12.006
108. J. He, L. Tao, H. Zhang, B. Zhou, J. Li, Emerging 2D materials beyond
graphene for ultrashort pulse generation in fiber lasers, Nanoscale, 11 (2019)
2577, https://doi.org/10.1039/C8NR09368G
109. S. Guo, Y. Zhang, Y. Ge, S. Zhang, H. Zeng, H. Zhang, 2D V‐V binary
materials: status and challenges, Advanced Materials, 39 (2019) 1902352,
https://doi.org/10.1002/adma.201902352
110. N. Sezer, S.A. Khan, M. Koç, Boiling heat transfer enhancement by
self‐assembled graphene/silver hybrid film for the thermal management of
concentrated photovoltaics, Energy Technology, 8 (2020) 2000532,
https://doi.org/10.1002/ente.202000532
111. P. Hu, S. Hu, Y. Huang, J. R. Reimers, A. M. Rappe, Y. Li, A. Stroppa, W.
Ren, Bioferroelectric Properties of Glycine Crystals, The Journal of Physical
Chemistry Letters, 10 (2019) 1319, https://doi.org/10.1021/acs.jpclett.8b03837
112. S.A. Khan, N. Sezer, M. Koç, Design, fabrication and nucleate pool-boiling
heat transfer performance of hybrid micro-nano scale 2-D modulated porous
surfaces, Applied Thermal Engineering, 153 (2019) 168,
https://doi.org/10.1016/j.applthermaleng.2019.02.133
113. S.A. Khan, N. Sezer, S. Ismail, M. Koç, Design, synthesis and nucleate
boiling performance assessment of hybrid micro-nano porous surfaces for
thermal management of concentrated photovoltaics (CPV), Energy Conversion
and Management, 195 (2019) 1056,
https://doi.org/10.1016/j.enconman.2019.05.068
114. J. Joseph, S. G. Singh, S. R. K. Vanjari, Leveraging innate piezoelectricity
of ultra-smooth silk thin films for flexible and wearable sensor applications,
IEEE Sensors Journal, 17 (2017) 8306,
https://doi.org/10.1109/JSEN.2017.2766163
115. C. Wang, K. Xia, Y. Zhang, D. L. Kaplan. “Silk-Based Advanced Materials
for Soft Electronics, Accounts of Chemical Research, 52 (2019) 2916,
https://doi.org/10.1021/acs.accounts.9b00333
116. N. Sezer, M.A. Atieh, M. Koc, A comprehensive review on synthesis,
stability, thermophysical properties, and characterization of nanofluids, Powder
technology, 344 (2018) 404, https://doi.org/10.1016/j.powtec.2018.12.016
117. M. Smith, C. Lindackers, K. McCarthy, S. Kar-Narayan, Enhanced
Molecular Alignment in Poly-l-Lactic Acid Nanotubes Induced via Melt-Press
Template-Wetting, Macromolecular Materials and Engineering, 304 (2019)
1800607, https://doi.org/10.1002/mame.201800607
118. W. Deng, T. Yang, L. Jin, C. Yan, H. Huang, X. Chu, Z. Wang, D. Xiong,
G. Tian, Y. Gao, H. Zhang, W. Yang, Cowpea-structured PVDF/ZnO
nanofibers based flexible self-powered piezoelectric bending motion sensor
towards remote control of gestures, Nano Energy, 55 (2019) 516,
https://doi.org/10.1016/j.nanoen.2018.10.049
119. D. Vanderbilt, Berry-phase theory of proper piezoelectric response, Journal
of Physics and Chemistry of Solids, 61 (2000) 147,
https://doi.org/10.1016/S0022-3697(99)00273-5
120. S. Dutta, P. Buragohain, S. Glinsek, C. Richter, H. Aramberri, H. Lu, U.
Schroeder, E. Defay, A. Gruverman, J. Íñiguez, Piezoelectricity in hafnia,
Nature Communications, 12 (2021) 7301, https://doi.org/10.1038/s41467-021-
27480-5
121. М. Alyörük, Piezoelectric properties of monolayer II–VI group oxides by
first-principles calculations, Physic Status Solidi, 253 (2016) 2534,
https://doi.org/10.1002/pssb.201600387
122. K. Lejaeghere et al., Reproducibility in density functional theory
calculations of solids, Science, 351 (2016) aad3000-1,
https://doi.org/10.1126/science.aad3000
123. R. O. Jones, Density functional theory: Its origins, rise to prominence, and
future, Reviews of modern physics, 87 (2015) 897,
https://doi.org/10.1103/RevModPhys.87.897
124. Z. L. Wang, J. Song, Рiezoelectric Nanogenerators Based on Zinc Oxide
Nanowire Arrays, Science, 312 (2006) 242.
https://doi.org/10.1126/science.1124005
125. R. Hinchet, U. Khan, C. Falconi, S.-W. Kim, Piezoelectric properties in twodimensional materials: Simulations and experiments, Materials Today, 21
(2018) 611, https://doi.org/10.1016/j.mattod.2018.01.031
126. F. Li, T. Shen, C. Wang, Y. Zhang, J. Qi, H. Zhang, Advances in
Strain‑Induced Piezoelectric and Piezoresistive Effect-Engineered 2D
Semiconductors for Adaptive Electronics and Optoelectronics, Nano-Micro
Letters, 12 (2020) 106, https://doi.org/10.1007/s40820-020-00439-9
127. R. Fe, W. Li, J. Li, L.Yang, Giant piezoelectricity of monolayer group IV
monochalcogenides: SnSe, SnS, GeSe, and GeS, Applied Physics Letters, 107
(2015) 173104, https://doi.org/10.1063/1.4934750
128. R.M. Balabai, V.M. Zadorozhnii, Ab initio study of the piezoelectric effects
of the 2D semiconductors of IV group monochalcogenides (GeSe, GeS) // The
International research and practice conference “Nanotechnology and
nanomaterials” (NANO-2022). Abstract Book of participants of the
International research and practice conference, 25–27 August 2022, Lviv.
Edited by Dr. Olena Fesenko. – Kyiv: LLC APF POLYGRAPH SERVICE,
2022. – Р. 410. http://nanoconference.iop.kiev.ua/assets/files/nano22bookOfAbstracts.pdf
129. R.M. Balabai, V.M. Zadorozhnii, Ab initio study of the piezoelectric effects
of the 2D semiconductors of IV group monochalcogenides (GeSe, GeS),
Molecular Crystals and Liquid Crystals, 765 (2023) 97,
https://doi.org/10.1080/15421406.2023.2215026
130. T. Grandke, L. Ley, Angular-resolved UV photoemission and the band
structure of GeS, Physical Review B, 16 (1977) 832,
https://doi.org/10.1103/PhysRevB.16.832
131. S. Dutta, P. Buragohain, S. Glinsek, C. Richter, H. Aramberri, H. Lu, U.
Schroeder, E. Defay, A. Gruverman, J. Íñiguez, Piezoelectricity in hafnia,
Nature Communications, 12 (2021) 7301, https://doi.org/10.1038/s41467-021-
27480-5
132. R.M. Balabai, V.M. Zadorozhnii, The piezoelectric activity in the HfO2
nanoclusters // The International research and practice conference
“Nanotechnology and nanomaterials” (NANO-2023). Abstract Book of
participants of the International research and practice conference, 16–19
August 2023, Bukovel. Edited by Dr. Olena Fesenko. – Kyiv: LLC APF
POLYGRAPH SERVICE, 2023. – P. 87.
133. R.M. Balabai, V.M. Zadorozhnii, The piezoelectric activity in the HfO2
nanoclusters, Molecular Crystals and Liquid Crystals, 768 (2024) 1254,
https://doi.org/10.1080/15421406.2024.2403914
134. X. Sang, E.D. Grimley, T. Schenk, U. Schroeder, J.M. Lebeau, On the
structural origins of ferroelectricity in HfO2 thin films, Applied Physics Letters,
106 (2015) 162905, https://doi.org/10.1063/1.4919135
135. J. Liu, S. Liu, L. H. Liu, B. Hanrahan, S. T. Pantelides, Origin of
Pyroelectricity in Ferroelectric HfO2, Phys. Rev. Applied, 12 (2019) 034032,
https://doi.org/10.1103/PhysRevApplied.12.034032
136. S. Kirbach, K. Kühne, W. Weinreich, Piezoelectric Hafnium Oxide Thin
Films for Energy - Harvesting Applications, IEEE (2018),
DOI:10.1109/NANO.2018.8626275
137. M. Smith, S.i Kar-Narayan, Piezoelectric polymers: theory, challenges and
opportunities, International Materials Reviews, 67 (2022)65,
https://doi.org/10.1080/09506608.2021.1915935
138. M. Ali, M. J. Bathaei, L. Beker, Biodegradable Piezoelectric Polymers:
Recent Advancements in Materials and Applications, Advanced Healthcare
Materials, 12 (2023) 2300318, https://doi.org/10.1002/adhm.202300318
139. Y. Yu, F. Narita, Evaluation of Electromechanical Properties and
Conversion Efficiency of Piezoelectric Nanocomposites with Carbon-FiberReinforced Polymer Electrodes for Stress Sensing and Energy Harvesting,
Polymers, 13 (2021) 3184, https://doi.org/10.3390/polym13183184
140. J. Wu, Y. Fu, G.-H. Hu, S. Wang, C. Xiong. Effect of Stretching on
Crystalline Structure, Ferroelectric and Piezoelectric Properties of SolutionCast Nylon-11 Films, Polymers, 13 (2021) 2037,
https://doi.org/10.3390/polym13132037
141. W. Kaewkan, T. Kohji, H. Makoto, O. Tokashi, K. Kazuo, K. Ryota, T.
Taro, O. Tomoji, K. Tetsuo, Crystal Structure Analysis of Poly(L-lactic Acid) α
Form On the basis of the 2-Dimensional Wide-Angle Synchrotron X-ray and
Neutron Diffraction Measurements, Macromolecules, 44 (2011) 6441,
https://dx.doi.org/10.1021/ma2006624
142. Задорожній В.М, Балабай Р.М., Бондаренко О.О. П'єзоелектричний
відгук полі(L-молочної кислоти) α-форми на механічно напружений стан
// 9-а Українська наукова конференція з фізики напівпровідників.
Матеріали конференції. – Ужгород: Видавець ТОВ "Рік-У", 2023. – с.58-
59.
143. V.M. Zadorozhnii, R.M. Balabai, O. O. Bondarenko, Piezoelectric response
of α-form poly (L-lactic acid) to mechanically stressed state, Ukrainian Journal
of Physics, 70 (2025) 109, https://doi.org/10.15407/ujpe70.2.109
144. Y. Choi, S Kim, M. Smith, F. Williams, M. E. Vickers, J.A. Elliott, S. KarNarayan*,Unprecedented dipole alignment in α-phase nylon-11 nanowires for
high-performance energy-harvesting applications, Science Advances, 6 (2020)
5065, https://doi.org/10.1126/sciadv.aay5065
145. J. Pepin, V. Miri, J.-M. Lefebvre, New Insights into the Brill Transition in
Polyamide 11 and Polyamide, Macromolecules, 49 (2016) 564,
https://doi.org/10.1021/acs.macromol.5b01
146. Y. S. Choi, S. K. Kim, F. Williams, Y. Calahorra, J. A. Elliott, S. KarNarayan, The effect of crystal structure on the electromechanical properties of
piezoelectric Nylon-11 nanowires, Chemical Communications, 54 (2018) 6863,
https://doi.org/10.1039/C8CC02530D
147. T. Sasaki, Notes on the polymorphism in nylon 11, Journal of Polymer
Sciences part B, 3 (1965) 557, https://doi.org/10.1002/pol.1965.110030707
148. A. Kawaguchi, T. Ikawa, Y. Fujiwara, M. Tabuchi, K. Monobe,
Polymorphism in lamellar single crystals of Nylon 11, Journal of
Macromolecular Science, Part B, 20 (1981) 1,
https://doi.org/10.1080/00222348108219425
149. K. G. Kim, B. A. Newman, J. I. Scheinbeim, Temperature dependence of the
crystal structures of Nylon 11, Journal of Polymer Science Polymer Physics
Edition, 23 (1985) 477, https://doi.org/10.1002/pol.1985.180231206
150. S. S. Nair, C. Ramesh, K Tashiro, Crystalline phases in Nylon-11: Studies
using HTWAXS and HTFTIR, Macromolecules, 39 (2006) 2841,
https://doi.org/10.1021/ma052597e
151. B. A. Newman, T. P. Sham, K. D. Pae, A high-pressure x-ray study of Nylon
11, Journal of Materials Science, 48 (1977) 4092,
https://doi.org/10.1007/BF00542825
152. K. Little, Investigation of nylon “texture” by X-ray diffraction, British
Journal of Applied Physics, 10 (1959) 225, https://doi.org/10.1088/0508-
3443/10/5/307
153. Y. S. Choi, S. Kar-Narayan, Nylon-11 nanowires for triboelectric energy
harvesting, EcoMat, 4 (2020) e12068, https://doi.org/10.1002/eom2.12068
154. E. Roguet, S. Tence -Girault, S. Castagnet, J. C. Grandidier, G. Hochstetter,
Micromechanisms in volved in the atypical tensile behavior observed in polyamide 11 at high temperature, Journal of Polymer Sciences part B, 45
(2007) 3046, https://doi.org/10.1002/polb.21299
155. M. Dosiere, J. J. Point, Orientation of the boundary faces in nylon-11
lamellar crystals, Journal of Polymer Science: Polymer Physics Edition, 22
(1984) 1383, https://doi.org/10.1002/pol.1984.180220803
156. S Rhee, J. L. White, Crystalline structure and morphology of biaxially
oriented polyamide-11 films, Journal of Polymer Sciences part B, 40 (2002)
2624, https://doi.org/10.1002/polb.10330
157. V.M. Zadorozhnii, R.M. Balabai, Triboelectric charge on the crystalline
region of a-phase hylon-11, The International research and practice conference
“Nanotechnology and nanomaterials” (NANO-2024), Abstract Book of
participants of the International research and practice conference, Uzhorod, 21–
24 August (2024) 172, https://drive.google.com/file/d/1_I2sb5lRxa8SCTPSjnFYNrr103akqQp/view?usp=sharing
158. S. Dasgupta, W. B. Hammond, W. A. Goddard III, Crystal Structures and
Properties of Nylon Polymers from Theory, Journal of the American Chemical
Society, 118 (1996) 12291, https://doi.org/10.1021/ja944125d |
uk |