dc.description |
1. Здещиц В.М., Здещиц А.В., Черних А. Розробка та методичний супровід фронтальної лабораторної роботи з фізики “Петльовий маятник”. Фізико-математична освіта. 2020. Випуск 1 (23). Частина 2. с. 31-38.
doi 10.31110/2413-1571-2020-023-1-2-005
2. Zhou Yu-bo, Yang Ming-duo, Zhang Min, Fan Dai-he, Liu Qi-jun, Chang Xiang-hui, Jia Xin-yan, Wei Yun. Research on the looping pendulum phenomenon. European Journal of Physics. 2020. Vol. 41. P. 1-16.
doi: 10.1088/1361-6404/ab5e68
3. Rubin S. A. Variable-mass snowball rolling down a snowy slope. The Physics Teacher. 2019. Vol. 57, P. 150-152. https://doi.org/10.1119/1.5092471
4. openstax.org/details/books/university-physics-volume-1
5. Thomas B., Greenslade Jr. Atwood’s machin. The Physics Teacher. 1985. Vol. 23, p. 24.
6. Tipler B., Paul A. Physics for scientists and engineers, third edition, extended version. New York: Worth publishers. ISBN 0-87901-432-6. Chapter 6, example 6-13, p. 160.
7. McDermott L., Shaffer P., Somers M. Research as a guide for teaching introductory mechanics: An illustration in the context of the Atwood’s machine. Am. J. Phys. 1994, Vol. 62, P. 46–55.
8. Charles T., Wang P. The improved determination of acceleration in Atwood’s machine. Am. J. Phys. 1973. Vol. 41, P. 917–919.
9. Monteiro M., Stari C., Cabeza C., Marti A. The Atwood machine revisited using smartphones. The Physics Teacher. 2015, Vol. 3, P. 373–374.
10. Lopez D., Caprile I., Corvacho F., Reyes O. Study of a variable mass Atwood’s machine using a smartphone. The Physics Teacher. 2018, Vol. 56, 3, P. 182-183.
11. Yersel M. The flow of sand. The Physics Teacher. 2000, Vol. 38, 5, P. 290–291.
12. Flores J., Solovey G., Gil S. Flow of sand and a variable mass Atwood machine. Am. J. Phys. 2003. Vol. 71, P. 715–720.
13. Кучерук І. М., Горбачук І. М., Луцик П. П. Загальний курс фізики. Т. 1 : Механіка. Молекулярна фізика і термодинаміка. К. : Техніка, 1999. 536 с.
14. Mungan C., Lipscombe T. Vertical launch of a grappling hook. The Physics Teacher. 2022. Vol. 60, P. 327-331. https://doi.org/10.1119/5.0030313
15. Богданов С. Як швидше падати? Квант. 2012, №1, C. 16-23.
16. Mungan C. Newtonian analysis of a folded chain drop. The Physics Teacher. 2018. Vol. 56, p.295.
17. Tomaszewski W., Pieranski P., Géminard J.-C. The motion of a freely falling chain tip. Am. J. Phys. 2006, Vol. 74, P. 776–783.
18. Thornton S., Marion J. Student solutions manual for thornton/ Marion’s classical dynamics of particles and systems, 5th ed. BrooksCole, Belmont, CA, 2004, p. 290.
19. Miller J., J. Satterly. Falling chains. Am. J. Phys. 1951. Vol. 19, P. 383–384.
20. Schagerl M., Steiner W., H. Troger. On the paradox of the free folded chain. Acta Mech. 1997, P. 155–168.
21. Géminard J.-C., Vanel L. The motion of a freely falling chain tip: force measurements. Am. J. Phys. 2008, Vol. 76, P. 541–545.
22. Wong, C., Yasui K. Falling chains. Am. J. Phys. 2006, Vol. 74, P. 490-496.
23. Wong C., Youn S., Yasui K. The falling chain of Hopkins, tait, steele and cayley. Eur. J. Phys. 2007, Vol. 28, P. 385-400.
24. Tiersten M. Force, momentum change, and motion. Am. J. Phys. 1969, Vol. 37, P. 82-87.
25. Grewal A., Johnson P., A. Ruina. A chain that speeds up, rather than slows, due to collisions: How compression can cause tension, Am. J. Phys. 2011. Vol. 79, P.723–729.
26. Siegel S. More about variable mass systems. Am. J. Phys. 1972. Vol. 40, P. 183-185.
27. Galkin M. The dynamics of a falling chain: II. Am. J. Phys. 1989. Vol. 57, P. 157-159.
28. Prato, D., Gleiser R. Another look at the uniform rope sliding over the edge of a smooth table. Am. J. Phys. 1982, Vol. 50, P. 536-539.
29. Galkin, M., March, R. The dynamics of a falling chain. Am. J. Phys. 1989, Vol. 57. P. 154-157.
30. Kagan D., Kott A. The greater-than-g acceleration of a bungee jumper. The Phys. Teacher. 1996. Vol. 34, P. 368-373.
31. Коли точки A і O на рис. 1 знаходяться далеко одна від одної, ділянки AB і DE спочатку будуть точними контактними мережами [як у F. Behroozi, “In praise of the catenary,” Phys. Teach. 2018. Vol. 56, p. 214–217 )] лише для рівномірного рядка, а не для ланцюжка з дискретними ланками.
32. Heck A., Uylings P., Kedzierska E. Understanding the physics of bungee jumping. Phys. Educ. 2010. Vol. 45, P. 63-72.
33. Heywood, W., Hurwitz H. Whip effect in a falling chain. Am. J. Phys. 1955. Vol. 23, P. 279-280.
34. Hooft G. Can there be physics without experiments? Challenges and pitfalls. Int. J. Mod. Phys. 2001. A 16, P. 2895-2908.
35. Chain Drop Answer 2, – Режим доступу до ресурсу: https://www.youtube.com/watch?v=X-QFAB0gEtE.
36. Чеснокова Д. А. Падіння тіл змінних мас: магістерська робота студентки фізико-математичного факультету групи ФІ-м-14 Д. А. Чеснокової; наук. керівник В. М. Здещиц. Кривий Ріг, 2019. 80 с.
37. Kirk T. McDonald. Snowball/log rolling down a snowy slopeю http://physics.princeton.edu/~mcdonald/examples/snowball. pdf
38. Mungan C. Analytic solution for a variable-mass snowball. The Physics Teacher. 2019. Vol. 57, p.436; doi: 10.1119/1.5126815
39. Tjossem P., Case W., Bass R. The candle seesaw. Am. J. Phys. 2019. Vol. 87, P. 370–376. https://doi.org/10.1119/1.5096886
40. Tit T. La Science Amusante, 3e Serie: 100 Nouvelles Experiences (Librairie Larousse, Paris, 1893), P. 11–12.
41. Ehrlich R. Why toast lands jelly-side down (Princeton U.P., Princeton, 1997), P. 142–144.
42. Theodorakis S., Paridi K. Oscillations of a candle burning at both ends. Am. J. Phys. 2009. Vol. 77(11), P.1049–1054.
43. Houdini. Book of magic: fascinating puzzles, tricks and vysterious stunts (Whitman, Racine, WI, 1927), P. 164–165.
44. Gardner M. Physics trick of the month: the candle see-saw. The Physics Teacher. 1993. Vol. 31(6), p. 382.
45. Gardner M. The candle see-saw. Magic Mag. 1995. Vol. 4. P. 88.
46. Lee M., Byrne G., Fenton F. Chaotic dynamics of a candle oscillator. APS Meeting Abstracts. 2016.
47. Lapidus I. Motion of a harmonic oscillator with sliding friction. Am. J. Phys. 1970. Vol. 38, P.1360–1361.
48. Sousa C. A., Rodrigues V. H. Mass redistribution in variable mass systems. Departamento de F´ısica da Universidade de Coimbra, P-3004-516 Coimbra, Portugal. 2003 р.
49. Tiersten M. Force, momentum change, and motion. Am. J. Phys. 1969. Vol. 37, P. 82-87.
50. Matolyak J., Matous G. Simple variable mass systems: Newton’s second law. The Physics Teacher. 1990. Vol. 28, P. 328-329.
51. Sousa C. A. Nonrigid systems: mechanical and thermodynamic aspects. Eur. J. Phys. 2002. Vol. 23, P. 433-440. |
uk |