Description:
Philosophy (2006). https://tinyurl.com/yck8br28. Accessed 12 May 2024
Regulation on using the distance learning technologies in the educational activity of the Kryvyi Rih State Pedagogical University (2021). https://tinyurl.com/2p8yc7jr. Accessed 12 May 2024
Regulation on the system of assessment of the students’ learning outcomes in the Kryvyi Rih State Pedagogical University (2022). https://tinyurl.com/db9at3ru. Accessed 12 May 2024
Abuzinadah, N., et al.: Role of convolutional features and machine learning for predicting student academic performance from MOODLE data. PLOS ONE 18, 1–22 (2023). https://doi.org/10.1371/journal.pone.0293061
Cohen, J.: Statistical Power Analysis for the Behavioral Sciences, 2 edn. Routledge, New York (1988). https://doi.org/10.4324/9780203771587
Fadieieva, L., Semerikov, S.: ADANCO output on dataset from https://zenodo.org/doi/10.5281/zenodo.10938018 (2024). https://ssemerikov.github.io/Fadieieva/. Accessed 12 May 2024
Fadieieva, L., Semerikov, S.: KSPU Moodle activities and marks 2020–2022, April 2024. https://doi.org/10.5281/zenodo.10938019. Accessed 12 May 2024
Fadieieva, L.O.: Adaptive learning: a cluster-based literature review (2011–2022). Educ. Technol. Q. 2023(3), 319–366 (2023). https://doi.org/10.55056/etq.613
Fadieieva, L.O.: Adaptive learning concept selection: a bibliometric review of scholarly literature from 2011 to 2019. Educ. Dimension 9, 136–148 (2023). https://doi.org/10.31812/ed.643
Fadieieva, L.O.: Bibliometric analysis of adaptive learning literature from 2011–2019: identifying primary concepts and keyword clusters. In: Antoniou, G., et al. (eds.) ICTERI 2023. CCIS, vol. 1980, pp. 215–226. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-48325-7_16
Henseler, J.: ADANCO 2.0.1 User Manual (2017). https://ris.utwente.nl/ws/portalfiles/portal/5135104/ADANCO_2-0-1.pdf. Accessed 12 May 2024
Henseler, J.: Composite-Based Structural Equation Modeling: Analyzing Latent and Emergent Variables. Methodology in the Social Sciences. The Guilford Press, New York (2021)
Google Scholar
Iyer, S.S., Gernal, L., Subramanian, R., Mehrotra, A.: Impact of digital disruption influencing business continuity in UAE higher education. Educ. Technol. Q. 2023(1), 18–57 (2023). https://doi.org/10.55056/etq.29
Jordan, C.: Comparison of International Baccalaureate (IB) chemistry students’ preferred vs actual experience with a constructivist style of learning in a Moodle e-learning environment. Int. J. Lesson Learning Stud. 2(2), 155–167 (2013). https://doi.org/10.1108/20468251311323397
Article
Google Scholar
Kaensar, C., Wongnin, W.: Analysis and prediction of student performance based on Moodle log data using machine learning techniques. Int. J. Emerg. Technol. Learn. 18(10), 184–203 (2023). https://doi.org/10.3991/ijet.v18i10.35841
Article
Google Scholar
Kiv, A., Semerikov, S., Soloviev, V.N., Kibalnyk, L., Danylchuk, H., Matviychuk, A.: Experimental economics and machine learning for prediction of emergent economy dynamics. CEUR Workshop Proc. 2422, 1–4 (2019), https://ceur-ws.org/Vol-2422/paper00.pdf
Krahn, T., Kuo, R., Chang, M.: Personalized study guide: a Moodle plug-in generating personal learning path for students. In: Frasson, C., Mylonas, P., Troussas, C. (eds.) ITS 2023. LNCS, vol. 13891, pp. 333–341. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-32883-1_30
Moreno-Marcos, P.M., Barredo, J., Muñoz-Merino, P.J., Delgado Kloos, C.: Statoodle: a learning analytics tool to analyze Moodle students’ actions and prevent cheating. In: Viberg, O., Jivet, I., Muñoz-Merino, P., Perifanou, M., Papathoma, T. (eds.) EC-TEL 2023. LNCS, vol. 14200, pp. 736–741. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-42682-7_70
Osadchyi, V.V.: Adaptive system for individualization and personalization of professional training of future specialists in blended learning. Technical report 0223U003360, Bogdan Khmelnitsky Melitopol State Pedagogical University (2023). https://nrat.ukrintei.ua/searchdoc/0223U003360. Accessed 12 May 2024
Petrova, M.Y., Mintii, M.M., Semerikov, S.O., Volkova, N.P.: Development of adaptive educational software on the topic of “Fractional Numbers” for students in grade 5. In: CEUR Workshop Proceedings, vol. 2292, pp. 162–192 (2018). http://ceur-ws.org/Vol-2292/paper19.pdf
Pérez-Suay, A., Van Vaerenbergh, S., Diago, P.D., Pascual-Venteo, A.B., Ferri, F.J.: Data-driven modeling through the moodle learning management system: an empirical study based on a mathematics teaching subject. IEEE Revista Iberoamericana de Tecnologias del Aprendizaje 18(1), 19–27 (2023). https://doi.org/10.1109/RITA.2023.3250434
Article
Google Scholar
Sergeev, K.A., Mironenko, O.I., Krivich, O.Y., Petrov, A.A., Kozlov, M.V.: Using the module “analytics and machine learning” in LMS Moodle at training students of specialty “Rolling stock”. AIP Conf. Proc. 2624(1), 050056 (2023). https://doi.org/10.1063/5.0133923
Vásquez-Bermúdez, M., Aguirre-Munizaga, M., Hidalgo-Larrea, J.: Analysis of CoI presence indicators in a Moodle forum using unsupervised learning techniques. In: Valencia-García, R., Bucaram-Leverone, M., Del Cioppo-Morstadt, J., Vera-Lucio, N., Centanaro-Quiroz, P.H. (eds.) CITI 2023. CCIS, vol. 1873, pp. 27–38. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-45682-4_3
Vitez, A.: Course module instances report (2022). https://moodle.org/plugins/report_coursemodstats. Accessed 12 May 2024
Vlasenko, K.V., Chumak, O.O., Lovianova, I.V., Achkan, V.V., Sitak, I.V.: Personal e-Learning Environment of the Maths teacher’ online course as a means of improving ICT competency of a Mathematics teacher. J. Phys. Conf. Ser. 2288(1), 012038 (2022). https://doi.org/10.1088/1742-6596/2288/1/012038
Article
Google Scholar
Vlasenko, K.V., Volkov, S.V., Lovianova, I.V., Sitak, I.V., Chumak, O.O., Bohdanova, N.H.: Exploring usability principles for educational online courses: a case study on an open platform for online education. Educ. Technol. Q. 2023(2), 173–187 (2023). https://doi.org/10.55056/etq.602