Description:
[1] N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw, Geometry from a
Time Series, Phys. Rev. Lett. 45, 712 (1980).
[2] F. Takens, Detecting Strange Attractors in Turbulence, in Dynamical Systems
and Turbulence, Warwick 1980, edited by D. Rand and L.-S. Young (Springer Berlin
Heidelberg, Berlin, Heidelberg, 1981), pp. 366–381.
[3] J.-P. Eckmann, S. O. Kamphorst, and D. Ruelle, Recurrence Plots of Dynamical
Systems, Europhysics Letters 4, 973 (1987).
[4] V. N. Soloviev and A. Belinskyi, Methods of Nonlinear Dynamics and the
Construction of Cryptocurrency Crisis Phenomena Precursors, in Proceedings of the
14th International Conference on ICT in Education, Research and Industrial
Applications. Integration, Harmonization and Knowledge Transfer. Volume II:
Workshops, Kyiv, Ukraine, May 14-17, 2018, edited by V. Ermolayev, M. C. SuárezFigueroa, V. Yakovyna, V. S. Kharchenko, V. Kobets, H. Kravtsov, V. S.
Peschanenko, Y. Prytula, M. S. Nikitchenko, and A. Spivakovsky, Vol. 2104 (CEURWS.org, 2018), pp. 116–127.
[5] V. N. Soloviev and A. Belinskiy, Complex Systems Theory and Crashes of
Cryptocurrency Market, in Information and Communication Technologies in
Education, Research, and Industrial Applications, edited by V. Ermolayev, M. C.
Suárez-Figueroa, V. Yakovyna, H. C. Mayr, M. Nikitchenko, and A. Spivakovsky
(Springer International Publishing, Cham, 2019), pp. 276–297.
[6] K. Shockley and M. Riley, In Recurrence Quantification Analysis: Theory and
Best Practices, 1st ed. (Springer, New York, 2015).
[7] T. Rawald, Scalable and Efficient Analysis of Large High-Dimensional Data
Sets in the Context of Recurrence Analysis, PhD thesis, Humboldt-Universität zu
Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2018.
[8] A. M. Fraser and H. L. Swinney, Independent Coordinates for Strange
Attractors from Mutual Information, Phys. Rev. A 33, 1134 (1986).
[9] J. Theiler, Statistical Precision of Dimension Estimators, Phys. Rev. A 41, 3038
(1990).
[10] M. Casdagli, S. Eubank, J. D. Farmer, and J. Gibson, State Space
Reconstruction in the Presence of Noise, Physica D: Nonlinear Phenomena 51, 52
(1991).
[11] M. T. Rosenstein, J. J. Collins, and C. J. De Luca, A Practical Method for
Calculating Largest Lyapunov Exponents from Small Data Sets, Physica D: Nonlinear
Phenomena 65, 117 (1993).
[12] M. T. Rosenstein, J. J. Collins, and C. J. De Luca, Reconstruction Expansion as
a Geometry-Based Framework for Choosing Proper Delay Times, Physica D:
Nonlinear Phenomena 73, 82 (1994).
[13] H. S. Kim, R. Eykholt, and J. D. Salas, Nonlinear Dynamics, Delay Times, and
Embedding Windows, Physica D: Nonlinear Phenomena 127, 48 (1999).
[14] J. V. Lyle, M. Nandi, and P. J. Aston, Symmetric Projection Attractor
Reconstruction: Sex Differences in the ECG, Frontiers in Cardiovascular Medicine 8,
(2021).
[15] T. Gautama, D. Mandic, and M. Van Hulle, A Differential Entropy Based
Method for Determining the Optimal Embedding Parameters of a Signal, Proceedings
6, 29 (2003).
[16] P. Grassberger and I. Procaccia, Measuring the Strangeness of Strange
Attractors, Physica D: Nonlinear Phenomena 9, 189 (1983).
[17] P. Grassberger and I. Procaccia, Characterization of Strange Attractors, Phys.
Rev. Lett. 50, 346 (1983).
[18] P. Grassberger, Generalized Dimensions of Strange Attractors, Physics Letters
A 97, 227 (1983).
[19] M. B. Kennel, R. Brown, and H. D. I. Abarbanel, Determining Embedding
Dimension for Phase-Space Reconstruction Using a Geometrical Construction, Phys.
Rev. A 45, 3403 (1992).
[20] A. Krakovská, K. Mezeiová, and H. Budáčová, Use of False Nearest
Neighbours for Selecting Variables and Embedding Parameters for State Space
Reconstruction, Journal of Complex Systems 2015, (2015).
[21] C. Rhodes and M. Morari, The False Nearest Neighbors Algorithm: An
Overview, Computers & Chemical Engineering 21, S1149 (1997).
[22] S. G. Stavrinides et al., On the Chaotic Nature of Random Telegraph Noise in
Unipolar RRAM Memristor Devices, Chaos, Solitons & Fractals 160, 112224 (2022).
[23] L. Cao, Practical Method for Determining the Minimum Embedding Dimension
of a Scalar Time Series, Physica D: Nonlinear Phenomena 110, 43 (1997).
[24] C. L. Webber and J. P. Zbilut, Dynamical Assessment of Physiological Systems
and States Using Recurrence Plot Strategies, Journal of Applied Physiology 76, 965
(1994).
[25] J. P. Zbilut and C. L. Webber, Embeddings and Delays as Derived from
Quantification of Recurrence Plots, Physics Letters A 171, 199 (1992).
[26] N. Marwan, N. Wessel, U. Meyerfeldt, A. Schirdewan, and J. Kurths,
Recurrence-Plot-Based Measures of Complexity and Their Application to Heart-RateVariability Data, Phys. Rev. E 66, 026702 (2002).
[27] A. O. Bielinskyi, V. N. Soloviev, V. Solovieva, S. O. Semerikov, and M. A.
Radin, Recurrence Quantification Analysis of Energy Market Crises: A Nonlinear
Approach to Risk Management, in Proceedings of the Selected and Revised Papers of
10th International Conference on Monitoring, Modeling & Management of Emergent
Economy (M3E2-MLPEED 2022), Virtual Event, Kryvyi Rih, Ukraine, November 17-
18, 2022, edited by H. B. Danylchuk and S. O. Semerikov, Vol. 3465 (CEUR-WS.org,
2022), pp. 110–131.
[28] A. Tomashin, G. Leonardi, and S. Wallot, Four Methods to Distinguish Between
Fractal Dimensions in Time Series Through Recurrence Quantification Analysis,
Entropy 24, (2022).
[29] M. S. Kanwal, J. A. Grochow, and N. Ay, Comparing Information-Theoretic
Measures of Complexity in Boltzmann Machines, Entropy 19, (2017).
[30] A. N. Kolmogorov, Three Approaches to the Quantitative Definition of
Information, International Journal of Computer Mathematics 2, 157 (1968).
[31] D. G. Bonchev, Information Theoretic Complexity Measures, in Encyclopedia
of Complexity and Systems Science, edited by R. A. Meyers (Springer New York, New
York, NY, 2009), pp. 4820–4839.
[32] L. T. Lui, G. Terrazas, H. Zenil, C. Alexander, and N. Krasnogor, Complexity
Measurement Based on Information Theory and Kolmogorov Complexity, Artificial
Life 21, 205 (2015).
[33] M. Li and P. Vitányi, Preliminaries, in An Introduction to Kolmogorov
Complexity and Its Applications (Springer New York, New York, NY, 2008), pp. 1–
99.
[34] C. E. Shannon, A Mathematical Theory of Communication, Bell System
Technical Journal 27, 379 (1948).
[35] A. Lempel and J. Ziv, On the Complexity of Finite Sequences, IEEE
Transactions on Information Theory 22, 75 (1976).
[36] J.-L. Blanc, L. Pezard, and A. Lesne, Delay Independence of MutualInformation Rate of Two Symbolic Sequences, Phys. Rev. E 84, 036214 (2011).
[37] S. Zozor, P. Ravier, and O. Buttelli, On Lempel–Ziv Complexity for
Multidimensional Data Analysis, Physica A: Statistical Mechanics and Its
Applications 345, 285 (2005).
[38] E. Estevez-Rams, R. Lora Serrano, B. Aragón Fernández, and I. Brito Reyes,
On the non-randomness of maximum Lempel Ziv complexity sequences of finite size,
Chaos: An Interdisciplinary Journal of Nonlinear Science 23, 023118 (2013).
[39] R. Giglio, R. Matsushita, A. Figueiredo, I. Gleria, and S. D. Silva, Algorithmic
Complexity Theory and the Relative Efficiency of Financial Markets, Europhysics
Letters 84, 48005 (2008).
[40] C. Taufemback, R. Giglio, and S. D. Silva, Algorithmic complexity theory
detects decreases in the relative efficiency of stock markets in the aftermath of the
2008 financial crisis, Economics Bulletin 31, 1631 (2011).
[41] R. Giglio and S. Da Silva, Ranking the Stocks Listed on Bovespa According to
Their Relative Efficiency, MPRA Paper, University Library of Munich, Germany,
2009.
[42] Y. Bai, Z. Liang, and X. Li, A Permutation Lempel-Ziv Complexity Measure for
EEG Analysis, Biomedical Signal Processing and Control 19, 102 (2015).
[43] M. Borowska, Multiscale Permutation Lempel–Ziv Complexity Measure for
Biomedical Signal Analysis: Interpretation and Application to Focal EEG Signals,
Entropy 23, (2021).
[44] B. K. Hillen, G. T. Yamaguchi, J. J. Abbas, and R. Jung, Joint-Specific Changes
in Locomotor Complexity in the Absence of Muscle Atrophy Following Incomplete
Spinal Cord Injury, Journal of NeuroEngineering and Rehabilitation 10, 1 (2013).
[45] M. D. Costa, C.-K. Peng, and A. L. Goldberger, Multiscale Analysis of Heart
Rate Dynamics: Entropy and Time Irreversibility Measures, Cardiovascular
Engineering 8, 88 (2008).
[46] R. A. Fisher and E. J. Russell, On the Mathematical Foundations of Theoretical
Statistics, Philosophical Transactions of the Royal Society of London. Series A,
Containing Papers of a Mathematical or Physical Character 222, 309 (1922).
[47] B. Hjorth, EEG Analysis Based on Time Domain Properties,
Electroencephalography and Clinical Neurophysiology 29, 306 (1970).
[48] F. Mormann, T. Kreuz, C. Rieke, R. G. Andrzejak, A. Kraskov, P. David, C. E.
Elger, and K. Lehnertz, On the Predictability of Epileptic Seizures, Clinical
Neurophysiology 116, 569 (2005).
[49] V. Marmelat, K. Torre, and D. Delignieres, Relative Roughness: An Index for
Testing the Suitability of the Monofractal Model, Frontiers in Physiology 3, (2012).
[50] T. M. Cover, Elements of Information Theory (John Wiley & Sons, 1999).
[51] A. Hacine-Gharbi and P. Ravier, A Binning Formula of Bi-Histogram for Joint
Entropy Estimation Using Mean Square Error Minimization, Pattern Recognition
Letters 101, 21 (2018).
[52] R. Clausius, T. A. Hirst, and J. Tyndall, The Mechanical Theory of Heat: With
Its Applications to the Steam-Engine and to the Physical Properties of Bodies (J. Van
Voorst, 1867).
[53] L. Boltzmann, Weitere Studien über Das wärmegleichgewicht Unter
Gasmolekülen, in Kinetische Theorie II: Irreversible Prozesse Einführung Und
Originaltexte (Vieweg+Teubner Verlag, Wiesbaden, 1970), pp. 115–225.
[54] S. M. Pincus, I. M. Gladstone, and R. A. Ehrenkranz, A Regularity Statistic for
Medical Data Analysis, Journal of Clinical Monitoring 7, 335 (1991).
[55] S. M. Pincus, Approximate Entropy as a Measure of System Complexity,
Proceedings of the National Academy of Sciences 88, 2297 (1991).
[56] V. N. Soloviev, A. O. Bielinskyi, and N. A. Kharadzjan, Coverage of the
Coronavirus Pandemic Through Entropy Measures, in 3rd Workshop for Young
Scientists in Computer Science and Software Engineering (CS and SE and SW 2020),
Kryvyi Rih, Ukraine, November 27, 2020, edited by A. E. Kiv, S. O. Semerikov, V. N.
Soloviev, and A. M. Striuk, Vol. 2832 (CEUR-WS.org, 2021), pp. 24–42.
[57] W. Chen, Z. Wang, H. Xie, and W. Yu, Characterization of Surface EMG
Signal Based on Fuzzy Entropy, IEEE Transactions on Neural Systems and
Rehabilitation Engineering 15, 266 (2007).
[58] H.-B. Xie, W.-X. He, and H. Liu, Measuring Time Series Regularity Using
Nonlinear Similarity-Based Sample Entropy, Physics Letters A 372, 7140 (2008).
[59] A. O. Bielinskyi, V. N. Soloviev, S. O. Semerikov, and V. V. Solovieva,
IDENTIFYING STOCK MARKET CRASHES BY FUZZY MEASURES OF
COMPLEXITY, Neuro-Fuzzy Modeling Techniques in Economics 10, 3 (2021).
[60] J. S. Richman and J. R. Moorman, Physiological Time-Series Analysis Using
Approximate Entropy and Sample Entropy, American Journal of Physiology-Heart and
Circulatory Physiology 278, H2039 (2000).
[61] C. Bandt and B. Pompe, Permutation Entropy: A Natural Complexity Measure
for Time Series, Phys. Rev. Lett. 88, 174102 (2002).
[62] H. Kantz and T. Schreiber, Nonlinear Time Series Analysis (Cambridge
University Press, 2004).
[63] V. N. Soloviev, A. Bielinskyi, and V. Solovieva, Entropy Analysis of Crisis
Phenomena for DJIA Index, in Proceedings of the 15th International Conference on
ICT in Education, Research and Industrial Applications. Integration, Harmonization
and Knowledge Transfer. Volume II: Workshops, Kherson, Ukraine, June 12-15,
2019, edited by V. Ermolayev, F. Mallet, V. Yakovyna, V. S. Kharchenko, V. Kobets,
A. Kornilowicz, H. Kravtsov, M. S. Nikitchenko, S. Semerikov, and A. Spivakovsky,
Vol. 2393 (CEUR-WS.org, 2019), pp. 434–449.
[64] S. J. Roberts, W. Penny, and I. Rezek, Temporal and Spatial Complexity
Measures for Electroencephalogram Based Brain-Computer Interfacing, Medical &
Biological Engineering & Computing 37, 93 (1999).
[65] M. Rostaghi and H. Azami, Dispersion Entropy: A Measure for Time-Series
Analysis, IEEE Signal Processing Letters 23, 610 (2016).
[66] J. C. Crepeau and L. K. Isaacson, Journal of Non-Equilibrium Thermodynamics
16, 137 (1991).
[67] B. B. Mandelbrot and B. B. Mandelbrot, The Fractal Geometry of Nature, Vol.
1 (WH freeman New York, 1982).
[68] B. B. Mandelbrot, C. J. G. Evertsz, and Y. Hayakawa, Exactly Self-Similar LeftSided Multifractal Measures, Phys. Rev. A 42, 4528 (1990).
[69] H. F. Jelinek, N. Elston, and B. Zietsch, Fractal Analysis: Pitfalls and
Revelations in Neuroscience, in Fractals in Biology and Medicine, edited by G. A.
Losa, D. Merlini, T. F. Nonnenmacher, and E. R. Weibel (Birkhäuser Basel, Basel,
2005), pp. 85–94.
[70] H. Steinhaus, Length, Shape and Area, in Colloquium Mathematicum, Vol. 3
(Polska Akademia Nauk. Instytut Matematyczny PAN, 1954), pp. 1–13.
[71] A. Vulpiani, Lewis Fry Richardson: Scientist, Visionary and Pacifist, Lettera
Matematica 2, 121 (2014).
[72] B. Hayes, Computing Science: Statistics of Deadly Quarrels, American
Scientist 90, 10 (2002).
[73] B. Mandelbrot, How Long Is the Coast of Britain? Statistical Self-Similarity and
Fractional Dimension, Science 156, 636 (1967).
[74] S. V. Bozhokin and D. A. Parshin, Fractals and Multifractals: Textbook
(Scientific; Publishing Center "Regular; Chaotic Dynamics", 2001).
[75] T. Gneiting, H. Ševčíková, and D. B. Percival, Estimators of Fractal
Dimension: Assessing the Roughness of Time Series and Spatial Data, Statistical
Science 27, 247 (2012).
[76] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications
(John Wiley & Sons, 2003).
[77] B. B. Mandelbrot and J. A. Wheeler, The Fractal Geometry of Nature,
American Journal of Physics 51, 286 (1983).
[78] H. E. Hurst, Long-Term Storage Capacity of Reservoirs, Transactions of the
American Society of Civil Engineers 116, 770 (1951).
[79] H. E. Hurst, A Suggested Statistical Model of Some Time Series Which Occur in
Nature, Nature 180, 494 (1957).
[80] C.-K. Peng, S. V. Buldyrev, S. Havlin, M. Simons, H. E. Stanley, and A. L.
Goldberger, Mosaic Organization of DNA Nucleotides, Phys. Rev. E 49, 1685 (1994).
[81] Z.-Q. Jiang, W.-J. Xie, and W.-X. Zhou, Testing the Weak-Form Efficiency of
the WTI Crude Oil Futures Market, Physica A: Statistical Mechanics and Its
Applications 405, 235 (2014).
[82] T. Higuchi, Approach to an Irregular Time Series on the Basis of the Fractal
Theory, Physica D: Nonlinear Phenomena 31, 277 (1988).
[83] C. F. Vega and J. Noel, Parameters Analyzed of Higuchi’s Fractal Dimension
for EEG Brain Signals, in 2015 Signal Processing Symposium (SPSympo) (2015), pp.
1–5.
[84] A. Petrosian, Kolmogorov Complexity of Finite Sequences and Recognition of
Different Preictal EEG Patterns, in Proceedings Eighth IEEE Symposium on
Computer-Based Medical Systems (1995), pp. 212–217.
[85] R. Esteller, G. Vachtsevanos, J. Echauz, and B. Litt, A Comparison of
Waveform Fractal Dimension Algorithms, IEEE Transactions on Circuits and Systems
I: Fundamental Theory and Applications 48, 177 (2001).
[86] C. Goh, B. Hamadicharef, G. T. Henderson, and E. C. Ifeachor, Comparison of
Fractal Dimension Algorithms for the Computation of EEG Biomarkers for Dementia,
in 2nd International Conference on Computational Intelligence in Medicine and
Healthcare (CIMED2005) (Professor José Manuel Fonseca, UNINOVA, Portugal,
Lisbon, Portugal, 2005).
[87] M. J. Katz, Fractals and the Analysis of Waveforms, Computers in Biology and
Medicine 18, 145 (1988).
[88] C. Sevcik, A Procedure to Estimate the Fractal Dimension of Waveforms,
(2010).
[89] A. Kalauzi, T. Bojić, and L. Rakić, Extracting Complexity Waveforms from
One-Dimensional Signals, Nonlinear Biomedical Physics 3, 1 (2009).
[90] A. Kalauzi, T. Bojić, and L. Rakić, Extracting Complexity Waveforms from
One-Dimensional Signals, Nonlinear Biomedical Physics 3, (2009).
[91] F. Hasselman, When the Blind Curve Is Finite: Dimension Estimation and
Model Inference Based on Empirical Waveforms, Frontiers in Physiology 4, (2013).
[92] R. F. Voss, Fractals in Nature: From Characterization to Simulation, in The
Science of Fractal Images, edited by H.-O. Peitgen and D. Saupe (Springer New York,
New York, NY, 1988), pp. 21–70.
[93] A. A. Anis and E. H. Lloyd, The Expected Value of the Adjusted Rescaled Hurst
Range of Independent Normal Summands, Biometrika 63, 111 (1976).
[94] T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman,
Fractal Measures and Their Singularities: The Characterization of Strange Sets, Phys.
Rev. A 33, 1141 (1986).
[95] U. Frisch and G. Parisi, Turbulence and Predictability of Geophysical Flows
and Climate Dynamics, in Proceedings of the International School of Physics“enrico
Fermi," Course LXXXVIII, Varenna, 1983 (North-Holland, New York, 1985).
[96] T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and B. I. Shraiman,
Fractal Measures and Their Singularities: The Characterization of Strange Sets,
Nuclear Physics B - Proceedings Supplements 2, 501 (1987).
[97] J. W. Kantelhardt, E. Koscielny-Bunde, H. H. A. Rego, S. Havlin, and A.
Bunde, Detecting Long-Range Correlations with Detrended Fluctuation Analysis,
Physica A: Statistical Mechanics and Its Applications 295, 441 (2001).
[98] J. W. Kantelhardt, Fractal and Multifractal Time Series, in Mathematics of
Complexity and Dynamical Systems, edited by R. A. Meyers (Springer New York,
New York, NY, 2011), pp. 463–487.
[99] J. W. Kantelhardt, S. A. Zschiegner, E. Koscielny-Bunde, S. Havlin, A. Bunde,
and H. E. Stanley, Multifractal Detrended Fluctuation Analysis of Nonstationary Time
Series, Physica A: Statistical Mechanics and Its Applications 316, 87 (2002).
[100] S. Dutta, Multifractal Properties of ECG Patterns of Patients Suffering from
Congestive Heart Failure, Journal of Statistical Mechanics: Theory and Experiment
2010, P12021 (2010).
[101] E. Maiorino, L. Livi, A. Giuliani, A. Sadeghian, and A. Rizzi, Multifractal
Characterization of Protein Contact Networks, Physica A: Statistical Mechanics and
Its Applications 428, 302 (2015).
[102] P. H. Figueirêdo, E. Nogueira, M. A. Moret, and S. Coutinho, Multifractal
Analysis of Polyalanines Time Series, Physica A: Statistical Mechanics and Its
Applications 389, 2090 (2010).
[103] G. R. Jafari, P. Pedram, and L. Hedayatifar, Erratum: Long-Range Correlation
and Multifractality in Bach’s Inventions Pitches, Journal of Statistical Mechanics:
Theory and Experiment 2012, E03001 (2012).
[104] Z.-Q. Jiang, W.-J. Xie, W.-X. Zhou, and D. Sornette, Multifractal Analysis of
Financial Markets: A Review, Reports on Progress in Physics 82, 125901 (2019).
[105] L. Telesca, V. Lapenna, and M. Macchiato, Multifractal Fluctuations in
Earthquake-Related Geoelectrical Signals, New Journal of Physics 7, 214 (2005).
[106] E. G. Yee Leung and Z. Yu, Temporal Scaling Behavior of Avian Influenza a
(H5N1): The Multifractal Detrended Fluctuation Analysis, Annals of the Association
of American Geographers 101, 1221 (2011).
[107] F. Liao and Y.-K. Jan, Using Multifractal Detrended Fluctuation Analysis to
Assess Sacral Skin Blood Flow Oscillations in People with Spinal Cord Injury, The
Journal of Rehabilitation Research and Development 48, 787 (2011).
[108] L. Telesca, V. Lapenna, and M. Macchiato, Multifractal Fluctuations in Seismic
Interspike Series, Physica A: Statistical Mechanics and Its Applications 354, 629
(2005).
[109] M. S. Movahed, F. Ghasemi, S. Rahvar, and M. R. R. Tabar, Long-Range
Correlation in Cosmic Microwave Background Radiation, Phys. Rev. E 84, 021103
(2011).
[110] P. Mali, S. Sarkar, S. Ghosh, A. Mukhopadhyay, and G. Singh, Multifractal
Detrended Fluctuation Analysis of Particle Density Fluctuations in High-Energy
Nuclear Collisions, Physica A: Statistical Mechanics and Its Applications 424, 25
(2015).
[111] I. T. Pedron, Correlation and Multifractality in Climatological Time Series,
Journal of Physics: Conference Series 246, 012034 (2010).
[112] R. Rak, S. Drożdż, J. Kwapień, and P. Oświȩcimka, Detrended CrossCorrelations Between Returns, Volatility, Trading Activity, and Volume Traded for the
Stock Market Companies, Europhysics Letters 112, 48001 (2015).
[113] M. Wątorek, S. Drożdż, J. Kwapień, L. Minati, P. Oświęcimka, and M.
Stanuszek, Multiscale Characteristics of the Emerging Global Cryptocurrency
Market, Physics Reports 901, 1 (2021).
[114] C.-K. Peng, S. Havlin, H. E. Stanley, and A. L. Goldberger, Quantification of
Scaling Exponents and Crossover Phenomena in Nonstationary Heartbeat Time
Series, Chaos: An Interdisciplinary Journal of Nonlinear Science 5, 82 (1995).
[115] E. Canessa, Multifractality in Time Series, Journal of Physics A: Mathematical
and General 33, 3637 (2000).
[116] A. Kasprzak, R. Kutner, J. Perelló, and J. Masoliver, Higher-Order Phase
Transitions on Financial Markets, The European Physical Journal B: Condensed
Matter and Complex Systems 76, 513 (2010).
[117] M. Dai, C. Zhang, and D. Zhang, Multifractal and Singularity Analysis of
Highway Volume Data, Physica A: Statistical Mechanics and Its Applications 407,
332 (2014).
[118] M. Dai, J. Hou, and D. Ye, Multifractal Detrended Fluctuation Analysis Based
on Fractal Fitting: The Long-Range Correlation Detection Method for Highway
Volume Data, Physica A: Statistical Mechanics and Its Applications 444, 722 (2016).
[119] X. Sun, H. Chen, Z. Wu, and Y. Yuan, Multifractal Analysis of Hang Seng
Index in Hong Kong Stock Market, Physica A: Statistical Mechanics and Its
Applications 291, 553 (2001).
[120] E. A. Ihlen, Introduction to Multifractal Detrended Fluctuation Analysis in
Matlab, Frontiers in Physiology 3, (2012).
[121] P. Oświȩcimka, L. Livi, and S. Drożdż, Right-Side-Stretched Multifractal
Spectra Indicate Small-Worldness in Networks, Communications in Nonlinear Science
and Numerical Simulation 57, 231 (2018).
[122] S. Drożdż and P. Oświȩcimka, Detecting and Interpreting Distortions in
Hierarchical Organization of Complex Time Series, Phys. Rev. E 91, 030902 (2015).
[123] S. Drożdż, R. Kowalski, P. Oświȩcimka, R. Rak, and R. Gȩbarowski,
Dynamical Variety of Shapes in Financial Multifractality, Complexity 2018, 1 (2018).
[124] A. Orozco-Duque, D. Novak, V. Kremen, and J. Bustamante, Multifractal
Analysis for Grading Complex Fractionated Electrograms in Atrial Fibrillation,
Physiological Measurement 36, 2269 (2015).
[125] A. Faini, G. Parati, and P. Castiglioni, Multiscale Assessment of the Degree of
Multifractality for Physiological Time Series, Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Sciences 379, 20200254 (2021).
[126] A. Bielinskyi, V. Soloviev, V. Solovieva, A. Matviychuk, and S. Semerikov,
The Analysis of Multifractal Cross-Correlation Connectedness Between Bitcoin and
the Stock Market, in Information Technology for Education, Science, and Technics,
edited by E. Faure, O. Danchenko, M. Bondarenko, Y. Tryus, C. Bazilo, and G. Zaspa
(Springer Nature Switzerland, Cham, 2023), pp. 323–345.
[127] E. P. Wigner, On the Statistical Distribution of the Widths and Spacings of
Nuclear Resonance Levels, Mathematical Proceedings of the Cambridge Philosophical
Society 47, 790 (1951).
[128] E. P. Wigner, On a Class of Analytic Functions from the Quantum Theory of
Collisions, Annals of Mathematics 53, 36 (1951).
[129] F. J. Dyson, Statistical Theory of the Energy Levels of Complex Systems. I,
Journal of Mathematical Physics 3, 140 (2004).
[130] F. J. Dyson and M. L. Mehta, Statistical Theory of the Energy Levels of
Complex Systems. IV, Journal of Mathematical Physics 4, 701 (2004).
[131] M. L. Mehta and F. J. Dyson, Statistical Theory of the Energy Levels of
Complex Systems. V, Journal of Mathematical Physics 4, 713 (2004).
[132] M. L. Mehta, Random Matrices (Academic Press, 1991).
[133] T. A. Brody, J. Flores, J. B. French, P. A. Mello, A. Pandey, and S. S. M.
Wong, Random-Matrix Physics: Spectrum and Strength Fluctuations, Rev. Mod.
Phys. 53, 385 (1981).
[134] L. Laloux, P. Cizeau, J.-P. Bouchaud, and M. Potters, Noise Dressing of
Financial Correlation Matrices, Phys. Rev. Lett. 83, 1467 (1999).
[135] Aspects of Multivariate Statistical Theory (Wiley, New York, 1982).
[136] F. J. Dyson, Distribution of Eigenvalues for a Class of Real Symmetric
Matrices, Revista Mexicana de Fisica 20, 231 (1971).
[137] A. M. Sengupta and P. P. Mitra, Distributions of Singular Values for Some
Random Matrices, Phys. Rev. E 60, 3389 (1999).
[138] V. Plerou, P. Gopikrishnan, B. Rosenow, L. A. Nunes Amaral, and H. E.
Stanley, Universal and Nonuniversal Properties of Cross Correlations in Financial
Time Series, Phys. Rev. Lett. 83, 1471 (1999).
[139] T. Guhr, A. Müller–Groeling, and H. A. Weidenmüller, Random-Matrix
Theories in Quantum Physics: Common Concepts, Physics Reports 299, 189 (1998).
[140] Y. V. Fyodorov and A. D. Mirlin, Analytical Derivation of the Scaling Law for
the Inverse Participation Ratio in Quasi-One-Dimensional Disordered Systems, Phys.
Rev. Lett. 69, 1093 (1992).
[141] C. J. Gavilán-Moreno and G. Espinosa-Paredes, Using Largest Lyapunov
Exponent to Confirm the Intrinsic Stability of Boiling Water Reactors, Nuclear
Engineering and Technology 48, 434 (2016).
[142] A. Prieto-Guerrero and G. Espinosa-Paredes, Dynamics of BWRs and
Mathematical Models, in Linear and Non-Linear Stability Analysis in Boiling Water
Reactors, edited by A. Prieto-Guerrero and G. Espinosa-Paredes (Woodhead
Publishing, 2019), pp. 193–268.
[143] V. N. Soloviev, A. Bielinskyi, O. Serdyuk, V. Solovieva, and S. Semerikov,
Lyapunov Exponents as Indicators of the Stock Market Crashes, in Proceedings of the
16th International Conference on ICT in Education, Research and Industrial
Applications. Integration, Harmonization and Knowledge Transfer. Volume II:
Workshops, Kharkiv, Ukraine, October 06-10, 2020, edited by O. Sokolov, G.
Zholtkevych, V. Yakovyna, Y. Tarasich, V. Kharchenko, V. Kobets, O. Burov, S.
Semerikov, and H. Kravtsov, Vol. 2732 (CEUR-WS.org, 2020), pp. 455–470.
[144] D. Nychka, S. Ellner, A. R. Gallant, and D. McCaffrey, Finding Chaos in Noisy
Systems, Journal of the Royal Statistical Society. Series B (Methodological) 54, 399
(1992).
[145] A. Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, Determining Lyapunov
Exponents from a Time Series, Physica D: Nonlinear Phenomena 16, 285 (1985).
[146] M. Sano and Y. Sawada, Measurement of the Lyapunov Spectrum from a
Chaotic Time Series, Phys. Rev. Lett. 55, 1082 (1985).
[147] J.-P. Eckmann, S. O. Kamphorst, D. Ruelle, and S. Ciliberto, Liapunov
Exponents from Time Series, Phys. Rev. A 34, 4971 (1986).
[148] U. Parlitz, Identification of True and Spurious Lyapunov Exponents from Time
Series, International Journal of Bifurcation and Chaos 02, 155 (1992).
[149] M. Balcerzak, D. Pikunov, and A. Dabrowski, The Fastest, Simplified Method
of Lyapunov Exponents Spectrum Estimation for Continuous-Time Dynamical
Systems, Nonlinear Dynamics 94, 3053 (2018).
[150] H. D. I. Abarbanel, R. Brown, J. J. Sidorowich, and L. Sh. Tsimring, The
Analysis of Observed Chaotic Data in Physical Systems, Rev. Mod. Phys. 65, 1331
(1993).
[151] J.-P. Eckmann and D. Ruelle, Ergodic Theory of Chaos and Strange Attractors,
Rev. Mod. Phys. 57, 617 (1985).
[152] A. Bielinskyi, S. Semerikov, O. Serdyuk, V. Solovieva, V. N. Soloviev, and L.
Pichl, Econophysics of Sustainability Indices, in Proceedings of the Selected Papers of
the Special Edition of International Conference on Monitoring, Modeling &
Management of Emergent Economy (M3E2-MLPEED 2020), Odessa, Ukraine, July
13-18, 2020, edited by A. Kiv, Vol. 2713 (CEUR-WS.org, 2020), pp. 372–392.
[153] G. Nicolis, I. Prigogine, W. H. Freeman, and Company, Exploring Complexity:
An Introduction (W.H. Freeman, 1989).
[154] C. Tsallis, Possible Generalization of Boltzmann-Gibbs Statistics, Journal of
Statistical Physics 52, 479 (1988).
[155] C. Tsallis, Dynamical Scenario for Nonextensive Statistical Mechanics, Physica
A: Statistical Mechanics and Its Applications 340, 1 (2004).
[156] C. Tsallis, M. Gell-Mann, and Y. Sato, Asymptotically Scale-Invariant
Occupancy of Phase Space Makes the Entropy 𝑆𝑞 Extensive, Proceedings of the
National Academy of Sciences 102, 15377 (2005).
[157] C. Tsallis, Economics and Finance: Q-Statistical Stylized Features Galore,
Entropy 19, (2017).
[158] C. Tsallis, Beyond Boltzmann–Gibbs–Shannon in Physics and Elsewhere,
Entropy 21, (2019).
[159] E. G. Pavlos, O. E. Malandraki, O. V. Khabarova, L. P. Karakatsanis, G. P.
Pavlos, and G. Livadiotis, Non-Extensive Statistical Analysis of Energetic Particle
Flux Enhancements Caused by the Interplanetary Coronal Mass EjectionHeliospheric Current Sheet Interaction, Entropy 21, (2019).
[160] R. de Oliveira, S. Brito, L. da Silva, and C. Tsallis, Connecting Complex
Networks to Nonadditive Entropies, Scientific Reports 11, 1130 (2021).
[161] G. Pavlos, A. Iliopoulos, L. Karakatsanis, M. Xenakis, and E. Pavlos,
Complexity of Economical Systems., Journal of Engineering Science & Technology
Review 8, (2015).
[162] G. L. Ferri, M. F. Reynoso Savio, and A. Plastino, Tsallis’ q-Triplet and the
Ozone Layer, Physica A: Statistical Mechanics and Its Applications 389, 1829 (2010).
[163] S. Umarov, C. Tsallis, and S. Steinberg, On Aq-Central Limit Theorem
Consistent with Nonextensive Statistical Mechanics, Milan Journal of Mathematics 76,
307 (2008).
[164] C. Anteneodo and C. Tsallis, Breakdown of Exponential Sensitivity to Initial
Conditions: Role of the Range of Interactions, Phys. Rev. Lett. 80, 5313 (1998).
[165] C. TSALLIS, Some Open Problems in Nonextensive Statistical Mechanics,
International Journal of Bifurcation and Chaos 22, 1230030 (2012).
[166] D. Stosic, D. Stosic, T. B. Ludermir, and T. Stosic, Nonextensive Triplets in
Cryptocurrency Exchanges, Physica A: Statistical Mechanics and Its Applications
505, 1069 (2018).
[167] A. O. Bielinskyi, A. V. Matviychuk, O. A. Serdyuk, S. O. Semerikov, V. V.
Solovieva, and V. N. Soloviev, Correlational and Non-Extensive Nature of Carbon
Dioxide Pricing Market, in ICTERI 2021 Workshops, edited by O. Ignatenko, V.
Kharchenko, V. Kobets, H. Kravtsov, Y. Tarasich, V. Ermolayev, D. Esteban, V.
Yakovyna, and A. Spivakovsky, Vol. 1635 (Springer International Publishing, Cham,
2022), pp. 183–199.
[168] I. Prigogine and E. N. Hiebert, From Being to Becoming: Time and Complexity
in the Physical Sciences, Physics Today 35, 69 (1982).
[169] M. Costa, A. L. Goldberger, and C.-K. Peng, Multiscale Entropy Analysis of
Biological Signals, Phys. Rev. E 71, 021906 (2005).
[170] J. F.Donges, R. V. Donner, and J. Kurths, Testing Time Series Irreversibility
Using Complex Network Methods, Europhysics Letters 102, 10004 (2013).
[171] M. Zanin, A. Rodríguez-González, E. Menasalvas Ruiz, and D. Papo, Assessing
Time Series Reversibility Through Permutation Patterns, Entropy 20, (2018).
[172] R. Flanagan and L. Lacasa, Irreversibility of Financial Time Series: A GraphTheoretical Approach, Physics Letters A 380, 1689 (2016).
[173] A. Puglisi and D. Villamaina, Irreversible Effects of Memory, Europhysics
Letters 88, 30004 (2009).
[174] C. Diks, J. C. van Houwelingen, F. Takens, and J. DeGoede, Reversibility as a
Criterion for Discriminating Time Series, Physics Letters A 201, 221 (1995).
[175] C. S. Daw, C. E. A. Finney, and M. B. Kennel, Symbolic Approach for
Measuring Temporal “Irreversibility”, Phys. Rev. E 62, 1912 (2000).
[176] P. Guzik, J. Piskorski, T. Krauze, A. Wykretowicz, and H. Wysocki, Heart Rate
Asymmetry by Poincaré Plots of RR Intervals, Biomedical Engineering /
Biomedizinische Technik 51, 272 (2006).
[177] A. Porta, S. Guzzetti, N. Montano, T. Gnecchi-Ruscone, R. Furlan, and A.
Malliani, Time Reversibility in Short-Term Heart Period Variability, in 2006
Computers in Cardiology (2006), pp. 77–80.
[178] L. Lacasa, A. Nuñez, É. Roldán, J. M. R. Parrondo, and B. Luque, Time Series
Irreversibility: A Visibility Graph Approach, The European Physical Journal B 85,
(2012).
[179] A. O. Bielinskyi, S. V. Hushko, A. V. Matviychuk, O. A. Serdyuk, S. O.
Semerikov, and V. N. Soloviev, Irreversibility of Financial Time Series: A Case of
Crisis, in Proceedings of the Selected and Revised Papers of 9th International
Conference on Monitoring, Modeling & Management of Emergent Economy (M3E2-
MLPEED 2021), Odessa, Ukraine, May 26-28, 2021, edited by A. E. Kiv, V. N.
Soloviev, and S. O. Semerikov, Vol. 3048 (CEUR-WS.org, 2021), pp. 134–150.
[180] A. Kiv, A. Bryukhanov, A. Bielinskyi, V. Soloviev, T. Kavetskyy, D. Dyachok,
I. Donchev, and V. Lukashin, Irreversibility of Plastic Deformation Processes in
Metals, in Information Technology for Education, Science, and Technics, edited by E.
Faure, O. Danchenko, M. Bondarenko, Y. Tryus, C. Bazilo, and G. Zaspa (Springer
Nature Switzerland, Cham, 2023), pp. 425–445.
[181] M. Costa, A. L. Goldberger, and C.-K. Peng, Broken Asymmetry of the Human
Heartbeat: Loss of Time Irreversibility in Aging and Disease, Phys. Rev. Lett. 95,
198102 (2005).
[182] C. L. Ehlers, J. Havstad, D. Prichard, and J. Theiler, Low Doses of Ethanol
Reduce Evidence for Nonlinear Structure in Brain Activity, The Journal of
Neuroscience 18, 7474 (1998).
[183] C. Yan, P. Li, L. Ji, L. Yao, C. Karmakar, and C. Liu, Area Asymmetry of Heart
Rate Variability Signal, BioMedical Engineering OnLine 16, (2017).
[184] C. K. Karmakar, A. Khandoker, and M. Palaniswami, Phase Asymmetry of
Heart Rate Variability Signal, Physiological Measurement 36, 303 (2015).
[185] B. Luque, L. Lacasa, F. Ballesteros, and J. Luque, Horizontal Visibility Graphs:
Exact Results for Random Time Series, Phys. Rev. E 80, 046103 (2009).
[186] L. Lacasa and R. Flanagan, Time Reversibility from Visibility Graphs of
Nonstationary Processes, Phys. Rev. E 92, 022817 (2015).
[187] I. Grosse, P. Bernaola-Galván, P. Carpena, R. Román-Roldán, J. Oliver, and H.
E. Stanley, Analysis of Symbolic Sequences Using the Jensen-Shannon Divergence,
Physical Review E 65, (2002).
[188] A. O. Bielinskyi, A. E. Kiv, Y. O. Prikhozha, M. A. Slusarenko, and V. N.
Soloviev, Complex Systems and Physics Education, in Proceedings of the 9th
Workshop on Cloud Technologies in Education, CTE 2021, Kryvyi Rih, Ukraine, December 17, 2021, edited by A. E. Kiv, S. O. Semerikov, and M. P. Shyshkina, Vol.
3085 (CEUR-WS.org, 2021), pp. 56–80.
[189] A. A. B. Pessa and H. V. Ribeiro, ordpy: A Python package for data analysis
with permutation entropy and ordinal network methods, Chaos: An Interdisciplinary
Journal of Nonlinear Science 31, 063110 (2021).
[190] E. P. White, B. J. Enquist, and J. L. Green, On Estimating the Exponent of
Power-Law Frequency Distributions, Ecology 89, 905 (2008).
[191] N. N. Taleb, The Black Swan: Second Edition: The Impact of the Highly
Improbable Fragility (Random House Publishing Group, 2010).
[192] P. Lévy, Calcul Des Probabilités, Par Paul lévy, ... (Gauthier-Villars, 1925).
[193] P. Lévy, Theorie de l’addition Des Variables Aleatoires (Gauthier-Villars,
1954).
[194] B. V. Gnedenko and A. N. Kolmogorov, Limit Distributions for Sums of
Independent Random Variables (Addison-Wesley, 1968).
[195] T. J. Kozubowski, M. M. Meerschaert, A. K. Panorska, and H.-P. Scheffler,
Operator Geometric Stable Laws, Journal of Multivariate Analysis 92, 298 (2005).
[196] A. Alvarez and P. Olivares, Méthodes d’estimation Pour Des Lois Stables Avec
Des Applications En Finance, Journal de La Société Française de Statistique 146, 23
(2005).
[197] J. P. Nolan, An Algorithm for Evaluating Stable Densities in Zolotarev’s (m)
Parameterization, Mathematical and Computer Modelling 29, 229 (1999).
[198] A. Bielinskyi, V. N. Soloviev, S. Semerikov, and V. Solovieva, Detecting Stock
Crashes Using Levy Distribution, in Proceedings of the Selected Papers of the 8th
International Conference on Monitoring, Modeling & Management of Emergent
Economy, M3E2-EEMLPEED 2019, Odessa, Ukraine, May 22-24, 2019, edited by A.
Kiv, S. Semerikov, V. N. Soloviev, L. Kibalnyk, H. Danylchuk, and A. Matviychuk,
Vol. 2422 (CEUR-WS.org, 2019), pp. 420–433.
[199] D. Salas-Gonzalez, J. M. Górriz, J. Ramírez, M. Schloegl, E. W. Lang, and A.
Ortiz, Parameterization of the Distribution of White and Grey Matter in MRI Using
the α-Stable Distribution, Computers in Biology and Medicine 43, 559 (2013).
[200] V. M. Zolotarev, One-Dimensional Stable Distributions (American
Mathematical Society, 1986).
[201] E. F. Fama and R. Roll, Parameter Estimates for Symmetric Stable
Distributions, Journal of the American Statistical Association 66, 331 (1971).
[202] J. H. McCulloch, Simple Consistent Estimators of Stable Distribution
Parameters, Communications in Statistics - Simulation and Computation 15, 1109
(1986).
[203] J. H. McCulloch, 13 Financial Applications of Stable Distributions, in
Statistical Methods in Finance, Vol. 14 (Elsevier, 1996), pp. 393–425.
[204] J. P. Nolan, Maximum Likelihood Estimation and Diagnostics for Stable
Distributions, in Lévy Processes: Theory and Applications, edited by O. E. BarndorffNielsen, S. I. Resnick, and T. Mikosch (Birkhäuser Boston, Boston, MA, 2001), pp.
379–400.
[205] S. Mittnik, S. T. rachev, T. Doganoglu, and D. Chenyao, Maximum Likelihood
Estimation of Stable Paretian Models, Mathematical and Computer Modelling 29, 275
(1999).
[206] W. H. Dumouchel, Stable Distributions in Statistical Inference: 1. Symmetric
Stable Distributions Compared to Other Symmetric Long-Tailed Distributions, Journal
of the American Statistical Association 68, 469 (1973).
[207] N. N. Taleb, Statistical Consequences of Fat Tails: Real World Preasymptotics,
Epistemology, and Applications, (2022).
[208] D. J. Watts and S. H. Strogatz, Collective Dynamics of ’Small-World’ Networks,
Nature 393, 440 (1998).
[209] A.-L. Barabási and R. Albert, Emergence of Scaling in Random Networks,
Science 286, 509 (1999).
[210] R. Albert and A.-L. Barabási, Statistical Mechanics of Complex Networks, Rev.
Mod. Phys. 74, 47 (2002).
[211] E. L. Platt, Network Science with Python and NetworkX Quick Start Guide:
Explore and Visualize Network Data Effectively (Packt Publishing, 2019).
[212] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms, Fourth Edition (MIT Press, 2022).
[213] J. Travers and S. Milgram, An Experimental Study of the Small World Problem,
in Social Networks, edited by S. Leinhardt (Academic Press, 1977), pp. 179–197.
[214] A. O. Bielinskyi and V. N. Soloviev, Complex Network Precursors of Crashes
and Critical Events in the Cryptocurrency Market, in Proceedings of St Student
Workshop on Computer Science and Software Engineering, CS and SE@SW 2018,
Kryvyi Rih, Ukraine, November 30, 2018, edited by S. O. Semerikov, A. M. Striuk, V.
N. Soloviev, and A. E. Kiv, Vol. 2292 (CEUR-WS.org, 2028), pp. 37–45.
[215] A. O. Bielinskyi, V. N. Soloviev, S. V. Hushko, A. E. Kiv, and A. V.
Matviychuk, High-Order Network Analysis for Financial Crash Identification, in
Proceedings of the Selected and Revised Papers of 10th International Conference on
Monitoring, Modeling & Management of Emergent Economy (M3E2-MLPEED 2022),
Virtual Event, Kryvyi Rih, Ukraine, November 17-18, 2022, edited by H. B.
Danylchuk and S. O. Semerikov, Vol. 3465 (CEUR-WS.org, 2022), pp. 132–149.
[216] A. Kiv, A. Bryukhanov, V. Soloviev, A. Bielinskyi, T. Kavetskyy, D. Dyachok,
I. Donchev, and V. Lukashin, Complex Network Methods for Plastic Deformation
Dynamics in Metals, Dynamics 3, 34 (2023).
[217] R. V. Donner, M. Small, J. F. Donges, N. Marwan, Y. Zou, R. Xiang, and J.
Kurths, Recurrence-Based Time Series Analysis by Means of Complex Network
Methods, International Journal of Bifurcation and Chaos 21, 1019 (2011).
[218] L. Lacasa, B. Luque, F. Ballesteros, J. Luque, and J. C. Nuño, From Time Series
to Complex Networks: The Visibility Graph, Proceedings of the National Academy of
Sciences 105, 4972 (2008).
[219] A. O. Bielinskyi, O. A. Serdyuk, S. O. Semerikov, and V. N. Soloviev,
Econophysics of Cryptocurrency Crashes: A Systematic Review, in Proceedings of the
Selected and Revised Papers of 9th International Conference on Monitoring,
Modeling & Management of Emergent Economy (M3E2-MLPEED 2021), Odessa,
Ukraine, May 26-28, 2021, edited by A. E. Kiv, V. N. Soloviev, and S. O. Semerikov,
Vol. 3048 (CEUR-WS.org, 2021), pp. 31–133.
[220] X. Lan, H. Mo, S. Chen, Q. Liu, and Y. Deng, Fast transformation from time
series to visibility graphs, Chaos: An Interdisciplinary Journal of Nonlinear Science
25, 083105 (2015).
[221] I. V. Bezsudnov and A. A. Snarskii, From the Time Series to the Complex
Networks: The Parametric Natural Visibility Graph, Physica A: Statistical Mechanics
and Its Applications 414, 53 (2014).
[222] T. T. Zhou, N. D. Jin, Z. K. Gao, and Y. B. Luo, Limited Penetrable Visibility
Graph for Establishing Complex Network from Time Series, Acta Physica Sinica 61,
2012-3-030506 (2012).
[223] Q. Xuan, J. Zhou, K. Qiu, D. Xu, S. Zheng, and X. Yang, CLPVG: Circular
limited penetrable visibility graph as a new network model for time series, Chaos: An
Interdisciplinary Journal of Nonlinear Science 32, 013130 (2022).
[224] F. R. K. Chung, Spectral Graph Theory (American Mathematical Society,
1997).
[225] N. Biggs, Spectral Graph Theory (CBMS Regional Conference Series in
Mathematics 92), Bulletin of the London Mathematical Society 30, 197 (1998).
[226] S. Butler, Interlacing for Weighted Graphs Using the Normalized Laplacian,
Electronic Journal of Linear Algebra 16, 90 (2007).
[227] G. Bounova and O. de Weck, Overview of Metrics and Their Correlation
Patterns for Multiple-Metric Topology Analysis on Heterogeneous Graph Ensembles,
Phys. Rev. E 85, 016117 (2012).
[228] I. Gutman, The Energy of a Graph, (1978).
[229] D. M. Cvetkovic, M. Doob, and H. Sachs, Spectra of Graphs. Theory and
Application, (1980).
[230] J. Wu, M. Barahona, Y.-J. Tan, and H.-Z. Deng, Spectral Measure of Structural
Robustness in Complex Networks, IEEE Transactions on Systems, Man, and
Cybernetics - Part A: Systems and Humans 41, 1244 (2011).
[231] W. Jun, M. Barahona, T. Yue-Jin, and D. Hong-Zhong, Natural Connectivity of
Complex Networks, Chinese Physics Letters 27, 078902 (2010).
[232] E. Estrada, Spectral Scaling and Good Expansion Properties in Complex
Networks, Europhysics Letters 73, 649 (2006).
[233] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathematical
Sciences (Society for Industrial; Applied Mathematics, 1994).
[234] I. J. Schoenberg, Publications of Edmund Landau, in Number Theory and
Analysis: A Collection of Papers in Honor of Edmund Landau (1877–1938), edited by
P. Turán (Springer US, Boston, MA, 1969), pp. 335–355.
[235] T. H. Wei, The Algebraic Foundations of Ranking Theory (University of
Cambridge, 1952).
[236] M. G. Kendall, Further Contributions to the Theory of Paired Comparisons,
Biometrics 11, 43 (1955).
[237] C. Berge, Théorie Des Graphes Et Ses Applications (Dunod, 1958).
[238] P. Bonacich, Technique for Analyzing Overlapping Memberships, Sociological
Methodology 4, 176 (1972).
[239] Wikipedia, Arnoldi Iteration.
[240] K. Stephenson and M. Zelen, Rethinking Centrality: Methods and Examples,
Social Networks 11, 1 (1989).
[241] V. Latora and M. Marchiori, Efficient Behavior of Small-World Networks, Phys.
Rev. Lett. 87, 198701 (2001).
[242] R. Pastor-Satorras, A. Vázquez, and A. Vespignani, Dynamical and Correlation
Properties of the Internet, Phys. Rev. Lett. 87, 258701 (2001).
[243] S. Maslov and K. Sneppen, Specificity and Stability in Topology of Protein
Networks, Science 296, 910 (2002).
[244] M. E. J. Newman, Assortative Mixing in Networks, Phys. Rev. Lett. 89, 208701
(2002).
[245] A. Barrat and M. Weigt, On the Properties of Small-World Network Models,
The European Physical Journal B-Condensed Matter and Complex Systems 13, 547
(2000).
[246] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, and D.-U. Hwang, Complex
Networks: Structure and Dynamics, Physics Reports 424, 175 (2006).
[247] P. Holme, C. R. Edling, and F. Liljeros, Structure and Time Evolution of an
Internet Dating Community, Social Networks 26, 155 (2004).
[248] P. Holme, F. Liljeros, C. R. Edling, and B. J. Kim, Network Bipartivity, Phys.
Rev. E 68, 056107 (2003).
[249] P. G. Lind, M. C. González, and H. J. Herrmann, Cycles and Clustering in
Bipartite Networks, Phys. Rev. E 72, 056127 (2005).
[250] P. Zhang, J. Wang, X. Li, M. Li, Z. Di, and Y. Fan, Clustering Coefficient and
Community Structure of Bipartite Networks, Physica A: Statistical Mechanics and Its
Applications 387, 6869 (2008).