Description:
[1] A. E. Kiv, S. O. Semerikov, V. N. Soloviev, A. M. Striuk, First Student Workshop on
Computer Science & Software Engineering, CEUR Workshop Proceedings 2292 (2018)
1–10. URL: http://ceur-ws.org/Vol-2292/paper00.pdf.
[2] A. E. Kiv, S. O. Semerikov, V. N. Soloviev, A. M. Striuk, Second Student Workshop on
Computer Science & Software Engineering, CEUR Workshop Proceedings 2546 (2019)
1–20. URL: http://ceur-ws.org/Vol-2546/paper00.pdf.
[3] A. E. Kiv, S. O. Semerikov, V. N. Soloviev, A. M. Striuk, 3rd Workshop for Young Scientists
in Computer Science & Software Engineering, CEUR Workshop Proceedings 2832 (2020)
1–10. URL: http://ceur-ws.org/Vol-2832/paper00.pdf.
[4] A. E. Kiv, S. O. Semerikov, V. N. Soloviev, A. M. Striuk, 4th Workshop for Young Scientists
in Computer Science & Software Engineering, CEUR Workshop Proceedings 3077 (2022)
i–xxxv. URL: https://ceur-ws.org/Vol-3077/intro.pdf.
[5] S. O. Semerikov, A. M. Striuk, Embracing Emerging Technologies: Insights from the 6th
Workshop for Young Scientists in Computer Science & Software Engineering, CEUR
Workshop Proceedings (2024) 1–36.
[6] Y. O. Chernukha, O. V. Klochko, T. P. Zuziak, Methodology of implementation of modern
information systems at commercial enterprises, CEUR Workshop Proceedings (2024)
48–62.
[7] V. P. Oleksiuk, D. V. Verbovetskyi, I. A. Hrytsai, Design and development of a game
application for learning Python, CEUR Workshop Proceedings (2024) 111–124.
[8] M. Y. Salohub, O. H. Rybalchenko, S. V. Bilashenko, Designing a cross-platform user-
friendly transport company application, CEUR Workshop Proceedings (2024) 75–85.
[9] Y. L. Turchyk, M. V. Puzino, O. H. Rybalchenko, S. V. Bilashenko, Research of the route
planning algorithms on the example of a drone delivery system software development,
CEUR Workshop Proceedings (2024) 86–100.
[10] V. M. Bazurin, O. I. Pursky, Y. M. Karpenko, T. V. Pidhorna, A. I. Nechepourenko, Soft-
ware development of thermal resistance calculator for thermal insulation parameters
determines dielectric building structures, CEUR Workshop Proceedings (2024) 237–245.
[11] I. V. Krasnokutska, O. S. Krasnokutskyi, Implementing E2E tests with Cypress and Page
Object Model: evolution of approaches, CEUR Workshop Proceedings (2024) 101–110.
[12] P. I. Chopyk, V. P. Oleksiuk, O. P. Chukhrai, Using the Three.js library to develop
remote physical laboratory to investigate diffraction, CEUR Workshop Proceedings (2024)
246–259.
29[13] N. Rudnichenko, V. Vychuzhanin, T. Otradskya, I. Petrov, Information system module for
analysis viral infections data based on machine learning, CEUR Workshop Proceedings
(2024) 63–74.
[14] V. Krutko, I. Spivak, S. Krepych, An approach to assessing the reliability of software
systems based on a graph model of method dependence, CEUR Workshop Proceedings
(2024) 37–47.
[15] O. V. Solomentsev, M. Y. Zaliskyi, D. I. Bakhtiiarov, B. S. Chumachenko, Data processing
method for multimodal distribution parameters estimation, CEUR Workshop Proceedings
(2024) 144–154.
[16] O. V. Hryshchuk, S. P. Zagorodnyuk, Modern methods of energy consumption optimiza-
tion in FPGA-based heterogeneous HPC systems, CEUR Workshop Proceedings (2024)
167–176.
[17] Y. B. Shapovalov, V. B. Shapovalov, Conference platform metadata and functions: existing
platforms analysis and ontology-based approach, CEUR Workshop Proceedings (2024)
177–192.
[18] O. Y. Lavrynenko, D. I. Bakhtiiarov, B. S. Chumachenko, O. G. Holubnychyi, G. F. Kon-
akhovych, V. V. Antonov, Application of Daubechies wavelet analysis in problems of
acoustic detection of UAVs, CEUR Workshop Proceedings (2024) 125–143.
[19] I. V. Ponomarenko, V. M. Pavlenko, O. B. Morhulets, D. V. Ponomarenko, N. M. Ukhnal,
Application of artificial intelligence in digital marketing, CEUR Workshop Proceedings
(2024) 155–166.
[20] B. B. Sus, O. S. Bauzha, S. P. Zagorodnyuk, T. V. Chaikivskyi, , O. V. Hryshchuk, Predictive
machine learning of soybean oil epoxidizing reactions using artificial neural networks,
CEUR Workshop Proceedings (2024) 223–236.
[21] O. V. Talaver, T. A. Vakaliuk, Dynamic system analysis using telemetry, CEUR Workshop
Proceedings (2024) 193–209.
[22] I. Fedorchenko, A. Oliinyk, T. Zaiko, K. Miedviediev, Y. Fedorchenko, M. Khokhlov,
Development of a modified genetic method for automatic university scheduling, CEUR
Workshop Proceedings (2024) 210–222.
[23] N. Cavus, M. M. Al-Momani, Mobile system for flexible education, Procedia Computer
Science 3 (2011) 1475–1479. doi:10.1016/j.procs.2011.01.034, world Conference
on Information Technology.
[24] A. B. Mbombo, N. Cavus, Smart University: A University In the Technological Age, TEM
Journal (2021) 13–17. doi:10.18421/tem101-02.
[25] D. Budgen, J. Bailey, M. Turner, B. Kitchenham, P. Brereton, S. Charters, Cross-domain
investigation of empirical practices, IET Software 3 (2009) 410–421(11). URL: https:
//digital-library.theiet.org/content/journals/10.1049/iet-sen.2008.0106.
[26] D. Budgen, B. Kitchenham, S. Charters, S. Gibbs, A. Pohthong, J. Keung, P. Brereton,
Lessons from Conducting a Distributed Quasi-experiment, in: 2013 ACM / IEEE Inter-
national Symposium on Empirical Software Engineering and Measurement, 2013, pp.
143–152. doi:10.1109/ESEM.2013.12.
[27] A. Kertész, P. Kacsuk, A Taxonomy of Grid Resource Brokers, in: P. Kacsuk, T. Fahringer,
Z. Németh (Eds.), Distributed and Parallel Systems, Springer US, Boston, MA, 2007, pp.
201–210. doi:10.1007/978-0-387-69858-8_20.
30[28] B. Mishra, B. Mishra, A. Kertesz, Stress-Testing MQTT Brokers: A Comparative Analysis
of Performance Measurements, Energies 14 (2021) 5817. doi:10.3390/en14185817.
[29] J. Suryadevara, B. Sunil, N. K. Suryadevara, Secured multimedia authentication system
for wireless sensor network data related to internet of things, in: Seventh International
Conference on Sensing Technology, ICST 2013, Wellington, New Zealand, December
3-5, 2013, IEEE, 2013, pp. 109–115. URL: https://doi.org/10.1109/ICSensT.2013.6727625.
doi:10.1109/ICSENST.2013.6727625.
[30] N. K. Survadevara, S. C. Mukhopadhyay, R. K. Rayudu, Applying SARIMA time series to
forecast sleeping activity for wellness model of elderly monitoring in smart home, in:
2012 Sixth International Conference on Sensing Technology (ICST), 2012, pp. 157–162.
doi:10.1109/ICSensT.2012.6461661.
[31] M. I. Nadeem, K. Ahmed, D. Li, Z. Zheng, H. K. Alkahtani, S. M. Mostafa, O. Mamyr-
bayev, H. Abdel Hameed, EFND: A Semantic, Visual, and Socially Augmented Deep
Framework for Extreme Fake News Detection, Sustainability 15 (2023) 133. doi:10.3390/
su15010133.
[32] A. Yeshmukhametov, M. Kalimoldayev, O. Mamyrbayev, Y. Amirgaliev, Design and
kinematics of serial/parallel hybrid robot, in: 2017 3rd International Conference on
Control, Automation and Robotics (ICCAR), 2017, pp. 162–165. doi:10.1109/ICCAR.
2017.7942679.
[33] J. Bae, B. Moon, Time synchronization with fast asynchronous diffusion in wireless sensor
network, in: 2009 International Conference on Cyber-Enabled Distributed Computing
and Knowledge Discovery, 2009, pp. 82–85. doi:10.1109/CYBERC.2009.5342158.
[34] H. Lee, B. Moon, A. H. Aghvami, Enhanced SIP for Reducing IMS Delay under WiFi-
to-UMTS Handover Scenario, in: 2008 The Second International Conference on Next
Generation Mobile Applications, Services, and Technologies, 2008, pp. 640–645. doi:10.
1109/NGMAST.2008.63.
[35] J. Wan, C. A. Byrne, M. J. O’Grady, G. M. P. O’Hare, Managing Wandering Risk in People
With Dementia, IEEE Transactions on Human-Machine Systems 45 (2015) 819–823.
doi:10.1109/THMS.2015.2453421.
[36] C. Muldoon, G. M. P. O’Hare, M. J. O’Grady, R. Tynan, Agent Migration and Commu-
nication in WSNs, in: 2008 Ninth International Conference on Parallel and Distributed
Computing, Applications and Technologies, 2008, pp. 425–430. doi:10.1109/PDCAT.
2008.58.
[37] J. Morajda, G. Paliwoda-Pekosz, An Enhancement of Kohonen Neural Networks for
Predictive Analytics: Self-Organizing Prediction Maps, in: B. B. Anderson, J. Thatcher,
R. D. Meservy, K. Chudoba, K. J. Fadel, S. Brown (Eds.), 26th Americas Conference on
Information Systems, AMCIS 2020, Virtual Conference, August 15-17, 2020, Association
for Information Systems, 2020. URL: https://aisel.aisnet.org/amcis2020/ai_semantic_for_
intelligent_info_systems/ai_semantic_for_intelligent_info_systems/6.
[38] P. Lula, G. Paliwoda-Pundefinedkosz, An ontology-based cluster analysis framework,
in: Proceedings of the First International Workshop on Ontology-Supported Business
Intelligence, OBI ’08, Association for Computing Machinery, New York, NY, USA, 2008.
doi:10.1145/1452567.1452574.
[39] E. Serral, P. Valderas, V. Pelechano, Addressing the evolution of automated user behaviour
31patterns by runtime model interpretation, Software & Systems Modeling 14 (2015) 1387–
1420. doi:10.1007/s10270-013-0371-3.
[40] E. Serral, P. Valderas, V. Pelechano, A Model Driven Development Method for Developing
Context-Aware Pervasive Systems, in: F. E. Sandnes, Y. Zhang, C. Rong, L. T. Yang,
J. Ma (Eds.), Ubiquitous Intelligence and Computing, Springer Berlin Heidelberg, Berlin,
Heidelberg, 2008, pp. 662–676. doi:10.1007/978-3-540-69293-5_52.
[41] Y. Romanenkov, V. Pasichnyk, N. Veretennikova, M. Nazaruk, A. Leheza, Information
and Technological Support for the Processes of Prognostic Modeling of Regional Labor
Markets, CEUR Workshop Proceedings 2386 (2019) 24–34. URL: https://ceur-ws.org/
Vol-2386/paper3.pdf.
[42] N. Veretennikova, N. Kunanets, Recommendation Systems as an Information and Tech-
nology Tool for Virtual Research Teams, in: N. Shakhovska, V. Stepashko (Eds.), Advances
in Intelligent Systems and Computing II, Springer International Publishing, Cham, 2018,
pp. 577–587. doi:10.1007/978-3-319-70581-1_40.
[43] M. Dong, L. Yao, X. Wang, B. Benatallah, Q. Z. Sheng, H. Huang, DUAL: A Deep Unified
Attention Model with Latent Relation Representations for Fake News Detection, in:
H. Hacid, W. Cellary, H. Wang, H.-Y. Paik, R. Zhou (Eds.), Web Information Systems
Engineering – WISE 2018, Springer International Publishing, Cham, 2018, pp. 199–209.
doi:10.1007/978-3-030-02922-7_14.
[44] K. Chen, L. Yao, X. Wang, D. Zhang, T. Gu, Z. Yu, Z. Yang, Interpretable Parallel Recurrent
Neural Networks with Convolutional Attentions for Multi-Modality Activity Modeling,
in: 2018 International Joint Conference on Neural Networks (IJCNN), 2018, pp. 1–8.
doi:10.1109/IJCNN.2018.8489767.
[45] A. Zunino, M. Campo, Chronos: A multi-agent system for distributed automatic meeting
scheduling, Expert Systems with Applications 36 (2009) 7011–7018. doi:10.1016/j.
eswa.2008.08.024.
[46] A. De Renzis, M. Garriga, A. Flores, A. Cechich, A. Zunino, Case-based Reasoning
for Web Service Discovery and Selection, Electronic Notes in Theoretical Computer
Science 321 (2016) 89–112. doi:10.1016/j.entcs.2016.02.006, cLEI 2015, the XLI
Latin American Computing Conference.
[47] B. Schooley, N. Hikmet, E. Atilgan, Health IT Maturity and Hospital Quality: Effects
of PACS Automation and Integration Levels on U.S. Hospital Performance, in: 2016
International Conference on Computational Science and Computational Intelligence
(CSCI), 2016, pp. 45–50. doi:10.1109/CSCI.2016.0016.
[48] E. Atilgan, I. Ozcelik, E. N. Yolacan, MQTT Security at a Glance, in: 2021 International
Conference on Information Security and Cryptology (ISCTURKEY), 2021, pp. 138–142.
doi:10.1109/ISCTURKEY53027.2021.9654337.
[49] I. Krak, O. Barmak, E. Manziuk, A. Kulias, Data Classification Based on the Features
Reduction and Piecewise Linear Separation, in: P. Vasant, I. Zelinka, G.-W. Weber (Eds.),
Intelligent Computing and Optimization, Springer International Publishing, Cham, 2020,
pp. 282–289. doi:10.1007/978-3-030-33585-4_28.
[50] Y. Krak, O. Barmak, O. Mazurets, The practice implementation of the information
technology for automated definition of semantic terms sets in the content of educational
materials, CEUR Workshop Proceedings 2139 (2018) 245–254. URL: http://ceur-ws.org/
32Vol-2139/245-254.pdf.
[51] K. M. Caramancion, The Relation Between Time of the Day and Misinformation Vul-
nerability: A Multivariate Approach, in: 2021 IEEE 16th International Conference on
Computer Sciences and Information Technologies (CSIT), volume 1, 2021, pp. 150–153.
doi:10.1109/CSIT52700.2021.9648654.
[52] K. M. Caramancion, Textual vs. Visual Fake News: A Deception Showdown, in: 2021
IEEE International Conference on Cloud Computing in Emerging Markets (CCEM), 2021,
pp. 31–35. doi:10.1109/CCEM53267.2021.00015.
[53] P. Hryhoruk, N. Khrushch, S. a. Grygoruk, Using Multidimensional Scaling for Assessment
Economic Development of Regions, International journal of industrial Engineering &
Production Research 31 (2020). doi:10.22068/ijiepr.31.4.597.
[54] P. Hryhoruk, N. Khrushch, S. Grygoruk, K. Gorbatiuk, L. Prystupa, Assessing the Impact
of COVID-19 Pandemic on the Regions’ Socio-Economic Development: The Case of
Ukraine, European Journal of Sustainable Development 10 (2021) 63. doi:10.14207/
ejsd.2021.v10n1p63.
[55] V. N. Kukharenko, A. P. Fedosova, A. G. Kolgatin, V. G. Dosov, Studying the processes in
the xenon heat exchanger-freezer, Khimicheskoe I Neftegazovoe Mashinostroenie (1992)
19–21.
[56] L. Bilousova, O. Kolgatin, L. Kolgatina, Pedagogical Diagnostics with Use of Computer
Technologies, CEUR Workshop Proceedings 1000 (2013) 209–220. URL: https://ceur-ws.
org/Vol-1000/ICTERI-2013-p-209-220.pdf.
[57] A. V. Riabko, T. A. Vakaliuk, O. V. Zaika, R. P. Kukharchuk, V. V. Kontsedailo, Chatbot
algorithm for solving physics problems, CEUR Workshop Proceedings 3553 (2023) 75–92.
URL: https://ceur-ws.org/Vol-3553/paper5.pdf.
[58] A. V. Riabko, T. A. Vakaliuk, O. V. Zaika, R. P. Kukharchuk, V. V. Kontsedailo, Cluster
fault tolerance model with migration of virtual machines, CEUR Workshop Proceedings
3374 (2023) 23–40. URL: https://ceur-ws.org/Vol-3374/paper02.pdf.
[59] A. Hrechuk, V. Bushlya, J.-E. Ståhl, V. Kryzhanivskyy, Novel metric “Implenarity” for
characterization of shape and defectiveness: The case of CFRP hole quality, Composite
Structures 265 (2021) 113722. doi:10.1016/j.compstruct.2021.113722.
[60] M. Moreno, J. M. Andersson, R. M’Saoubi, V. Kryzhanivskyy, M. P. Johansson-Jöesaar,
L. J. S. Johnson, M. Odén, L. Rogström, Adhesive wear of tialn coatings during low speed
turning of stainless steel 316l, Wear 524-525 (2023) 204838. doi:10.1016/j.wear.2023.
204838.
[61] A. Kupin, Neural Identification of Technological Process of Iron Ore Beneficiation, in:
2007 4th IEEE Workshop on Intelligent Data Acquisition and Advanced Computing
Systems: Technology and Applications, 2007, pp. 225–227. doi:10.1109/IDAACS.2007.
4488409.
[62] A. Kupin, Research of properties of conditionality of task to optimization of processes of
concentrating technology is on the basis of application of neural networks, Metallurgical
and Mining Industry 6 (2014) 51–55.
[63] A. V. Morozov, T. A. Vakaliuk, I. A. Tolstoy, Y. O. Kubrak, M. G. Medvediev, Digitalization
of thesis preparation life cycle: a case of zhytomyr polytechnic state university, CEUR
Workshop Proceedings 3553 (2023) 142–154. URL: https://ceur-ws.org/Vol-3553/paper14.
33pdf.
[64] R. P. Kukharchuk, T. A. Vakaliuk, O. V. Zaika, A. V. Riabko, M. Medvediev, Implementa-
tion of STEM learning technology in the process of calibrating an NTC thermistor and
developing an electronic thermometer based on it, CEUR Workshop Proceedings 3358
(2022) 39–52. URL: https://ceur-ws.org/Vol-3358/paper25.pdf.
[65] N. Balyk, O. Barna, G. Shmyger, V. Oleksiuk, Model of Professional Retraining of Teachers
Based on the Development of STEM Competencies, CEUR Workshop Proceedings 2104
(2018) 318–331. URL: https://ceur-ws.org/Vol-2104/paper_157.pdf.
[66] O. Spirin, V. Oleksiuk, O. Oleksiuk, S. Sydorenko, The Group Methodology of Using Cloud
Technologies in the Training of Future Computer Science Teachers, CEUR Workshop
Proceedings 2104 (2018) 294–304. URL: https://ceur-ws.org/Vol-2104/paper_154.pdf.
[67] S. Semerikov, S. Chukharev, S. Sakhno, A. Striuk, A. Iatsyshyn, S. Klimov, V. Osad-
chyi, T. Vakaliuk, P. Nechypurenko, O. Bondarenko, H. Danylchuk, Our sustainable
pandemic future, E3S Web of Conferences 280 (2021) 00001. doi:10.1051/e3sconf/
202128000001.
[68] D. S. Shepiliev, Y. O. Modlo, Y. V. Yechkalo, V. V. Tkachuk, M. M. Mintii, I. S. Mintii,
O. M. Markova, T. V. Selivanova, O. M. Drashko, O. O. Kalinichenko, T. A. Vakaliuk, V. V.
Osadchyi, S. O. Semerikov, Webar development tools: An overview, CEUR Workshop
Proceedings 2832 (2020) 84–93.
[69] S. A. MacGowan, F. Madeira, T. Britto-Borges, M. Warowny, A. Drozdetskiy, J. B. Procter,
G. J. Barton, The Dundee Resource for Sequence Analysis and Structure Prediction,
Protein Science 29 (2020) 277–297. doi:10.1002/pro.3783.
[70] H. Wright, K. Brodlie, J. Wood, J. Procter, Problem Solving Environments: Extending
the Rôle of Visualization Systems, in: A. Bode, T. Ludwig, W. Karl, R. Wismüller (Eds.),
Euro-Par 2000 Parallel Processing, Springer Berlin Heidelberg, Berlin, Heidelberg, 2000,
pp. 1323–1331. doi:10.1007/3-540-44520-X_185.
[71] V. Derbentsev, S. Semerikov, O. Serdyuk, V. Solovieva, V. Soloviev, Recurrence based
entropies for sustainability indices, E3S Web of Conferences 166 (2020) 13031. doi:10.
1051/e3sconf/202016613031.
[72] A. Kiv, V. Soloviev, S. Semerikov, H. Danylchuk, L. Kibalnyk, A. Matviychuk, Experimental
economics and machine learning for prediction of emergent economy dynamics, CEUR
Workshop Proceedings 2422 (2019) 1–4.
[73] A. Ganbayev, E. Seyidzade, Enhancing Customs Fraud Detection: A Comparative Study of
Methods for Performance Measurement and Feature Improvement, in: 2023 IEEE 17th In-
ternational Conference on Application of Information and Communication Technologies
(AICT), 2023, pp. 1–5. doi:10.1109/AICT59525.2023.10313153.
[74] A. Adamov, S. Mehdiyev, E. Seyidzade, Good practice of data modeling and database design
for UMIS. Course registration system implementation, in: 2014 IEEE 8th International
Conference on Application of Information and Communication Technologies (AICT),
2014, pp. 1–4. doi:10.1109/ICAICT.2014.7035949.
[75] S. O. Semerikov, A. M. Striuk, T. A. Vakaliuk, A. Morozov, Quantum information
technology on the Edge, CEUR Workshop Proceedings 2850 (2021) 1–15. URL: http:
//ceur-ws.org/Vol-2850/paper0.pdf.
[76] S. O. Semerikov, S. M. Chukharev, S. I. Sakhno, A. M. Striuk, A. V. Iatsyshin, S. V. Klimov,
34V. V. Osadchyi, T. A. Vakaliuk, P. P. Nechypurenko, O. V. Bondarenko, H. B. Danylchuk,
3rd International Conference on Sustainable Futures: Environmental, Technological,
Social and Economic Matters, IOP Conference Series: Earth and Environmental Science
1049 (2022) 011001. doi:10.1088/1755-1315/1049/1/011001.
[77] T. A. Vakaliuk, L. D. Shevchuk, B. V. Shevchuk, Possibilities of using AR and VR technolo-
gies in teaching mathematics to high school students, Universal Journal of Educational
Research 8 (2020) 6280 – 6288. doi:10.13189/ujer.2020.082267.
[78] T. Vakaliuk, D. Antoniuk, A. Morozov, M. Medvedieva, M. Medvediev, Green IT as a tool
for design cloud-oriented sustainable learning environment of a higher education institu-
tion, E3S Web of Conferences 166 (2020) 10013. doi:10.1051/e3sconf/202016610013.
[79] V. Voytenko, Some challenges in mobile context-aware applications for courses in
academia, in: N. C. Callaos, B. Sanchez, H. W. Chu, J. Ferrer, S. L. Fernandes (Eds.), 7th
International Multi-Conference on Complexity, Informatics and Cybernetics, IMCIC 2016
and 7th International Conference on Society and Information Technologies, ICSIT 2016 -
Proceedings, volume 1, International Institute of Informatics and Systemics, IIIS, 2016, pp.
244–245.
[80] F. Lin, A. Dewan, V. Voytenko, Open Interactive Algorithm Visualization, in: 2019 IEEE
Canadian Conference of Electrical and Computer Engineering (CCECE), 2019, pp. 1–4.
doi:10.1109/CCECE.2019.8861535.
[81] O. V. Bondarenko, P. P. Nechypurenko, V. A. Hamaniuk, S. O. Semerikov, Educational
Dimension: a new journal for research on education, learning and training, Educational
Dimension 1 (2019) 1–4. doi:10.31812/ed.620.
[82] S. Semerikov, Educational Technology Quarterly: in the beginning, Educational Technol-
ogy Quarterly 2021 (2021) 1–50. doi:10.55056/etq.13.
[83] S. Papadakis, A. E. Kiv, H. M. Kravtsov, V. V. Osadchyi, M. V. Marienko, O. P. Pinchuk, M. P.
Shyshkina, O. M. Sokolyuk, I. S. Mintii, T. A. Vakaliuk, L. E. Azarova, L. S. Kolgatina, S. M.
Amelina, N. P. Volkova, V. Y. Velychko, A. M. Striuk, S. O. Semerikov, ACNS Conference
on Cloud and Immersive Technologies in Education: Report, CTE Workshop Proceedings
10 (2023) 1–44. doi:10.55056/cte.544.
[84] T. A. Vakaliuk, Editorial for JEC Volume 2 Issue 2 (2023), Journal of Edge Computing 2
(2023) 102–103. doi:10.55056/jec.654.
[85] T. A. Vakaliuk, S. O. Semerikov, Introduction to doors Workshops on Edge Computing
(2021-2023), Journal of Edge Computing 2 (2023) 1–22. doi:10.55056/jec.618.
[86] A. I. Jony, A. K. B. Arnob, A long short-term memory based approach for detecting
cyber attacks in IoT using CIC-IoT2023 dataset, Journal of Edge Computing (2024).
doi:10.55056/jec.648.
[87] I. A. Pilkevych, D. L. Fedorchuk, M. P. Romanchuk, O. M. Naumchak, Approach to the
fake news detection using the graph neural networks, Journal of Edge Computing 2
(2023) 24–36. doi:10.55056/jec.592.
[88] N. M. Lobanchykova, I. A. Pilkevych, O. Korchenko, Analysis and protection of IoT
systems: Edge computing and decentralized decision-making, Journal of Edge Computing
1 (2022) 55–67. doi:10.55056/jec.573.
[89] N. Balyk, S. Leshchuk, D. Yatsenyak, Design and implementation of an IoT-based educa-
tional model for smart homes: a STEM approach, Journal of Edge Computing 2 (2023)
35148–162. doi:10.55056/jec.632.
[90] A. V. Ryabko, O. V. Zaika, R. P. Kukharchuk, T. A. Vakaliuk, Graph theory methods for fog
computing: A pseudo-random task graph model for evaluating mobile cloud, fog and edge
computing systems, Journal of Edge Computing 1 (2022) 1–16. doi:10.55056/jec.569.
[91] T. A. Uzdenov, A new approach for dispatching task flows in GRID systems with inalien-
able resources, Journal of Edge Computing 1 (2022) 68–80. doi:10.55056/jec.574.
[92] A. V. Riabko, T. A. Vakaliuk, O. V. Zaika, R. P. Kukharchuk, V. V. Kontsedailo, Investigating
the effect of virtual machine migration accounting on reliability using a cluster model,
Journal of Edge Computing 2 (2023) 37–63. doi:10.55056/jec.585.
[93] O. V. Talaver, T. A. Vakaliuk, Reliable distributed systems: review of modern approaches,
Journal of Edge Computing 2 (2023) 84–101. doi:10.55056/jec.586.
[94] T. Lorido-Botran, M. K. Bhatti, ImpalaE: Towards an optimal policy for efficient resource
management at the edge, Journal of Edge Computing 1 (2022) 43–54. doi:10.55056/
jec.572.
[95] M. V. Klymenko, A. M. Striuk, Design and implementation of an edge computing-based
GPS tracking system, Journal of Edge Computing 2 (2023) 175–189. doi:10.55056/jec.
634.
[96] A. R. Petrosian, R. V. Petrosyan, I. A. Pilkevych, M. S. Graf, Efficient model of PID
controller of unmanned aerial vehicle, Journal of Edge Computing 2 (2023) 104–124.
doi:10.55056/jec.593.
[97] T. M. Nikitchuk, T. A. Vakaliuk, O. A. Chernysh, O. L. Korenivska, L. A. Martseva,
V. V. Osadchyi, Non-contact photoplethysmographic sensors for monitoring students’
cardiovascular system functional state in an IoT system, Journal of Edge Computing 1
(2022) 17–28. doi:10.55056/jec.570.
[98] T. M. Nikitchuk, O. V. Andreiev, O. L. Korenivska, M. G. Medvediev, Model of an automated
biotechnical system for analyzing pulseograms as a kind of edge devices, Journal of Edge
Computing 2 (2023) 64–83. doi:10.55056/jec.627.
[99] O. L. Korenivska, V. B. Benedytskyi, O. V. Andreiev, M. G. Medvediev, A system for
monitoring the microclimate parameters of premises based on the Internet of Things and
edge devices, Journal of Edge Computing 2 (2023) 125–147. doi:10.55056/jec.614.
[100] A. G. Tkachuk, M. S. Hrynevych, T. A. Vakaliuk, O. A. Chernysh, M. G. Medvediev, Edge
computing in environmental science: automated intelligent robotic platform for water
quality assessment, Journal of Edge Computing 2 (2023) 163–174. doi:10.55056/jec.
633.