DSpace Repository

Density of vibrational states in glasses

Show simple item record

dc.contributor.author Gal'perin, Yu. M.
dc.contributor.author Karpov, V. G.
dc.contributor.author Соловйов, Володимир Миколайович
dc.date.accessioned 2017-07-04T18:08:47Z
dc.date.available 2017-07-04T18:08:47Z
dc.date.issued 1988-11
dc.identifier.citation Gal'perin Yu. M. Density of vibrational states in glasses / Yu. M. Gal'perin, V. G. Karpov, V. N. Solov'ev // Sov. Phys. JETP. – 1988. – Vol. 67, no. 5 (11), November. – Pp. 2386-2392. uk
dc.identifier.issn 0044-4510
dc.identifier.uri http://elibrary.kdpu.edu.ua/handle/0564/1005
dc.identifier.uri https://doi.org/10.31812/0564/1005
dc.description 1. W. A. Phillips, (ed.), Amorphous Solids: Low-Temperature Properties, (Springer, Berlin, 1981 ). 2. S. Hunklinger and A. K. Raychaudhuri, Prog. Low Temp. Phys. 9,267 (1986). 3. U. Buchenau, M. Prager, N. Nucker, A. J. Dianoux, N. Ahmad, and W. A. Phillips, Phys. Rev. B 34, 5665 (1986) 4. C. I. Nicholls and H. M. Rosenberg, J. Phys. C 17, 1165 (1984). 5. A. J. Dianoux, J. N. Page, and H. M. Rosenberg, Phys. Rev. Lett. 58,886 (1987). 6. R. H. Stolen, Phys. Chem. Glasses 11, No. 3, 89 ( 1970). 7. P. W. Anderson, B. I. Halperin, and C. M. Varma, Philos. Mag. 25, 1 (1972). 8. W. A. Phillips, J. Low Temp. Phys. 7, 351 (1972). 9. S. Alexander, C. Laermans, R. Orbach, and H. M. Rosenberg, Phys. Rev. B 28,4615 (1983). 10. A. Aharony, S. Alexander, 0. Entin-Wohlman, and R. Orbach, Phys. Rev. B 31,2565 ( 1985). 11. C. G. Montgomery, J. Low Temp. Phys. 39, 13 (1980). 12. I. M. Lifshitz, S. A. Gredskul, and L. A. Pastur, Introduction to the Theory of Disordered Systems [in Russian], Nauka, Moscow ( 1982). 13. A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory of Lattice Dynamics in the Harmonic Approximation, Suppl. 3 to Solid State Phys., Academic Press, New York (1963) [Russ. transl., Mir, Moscow (1965)]. 14. A. M. Kosevich, Physical Mechanics of Real Crystals [in Russian], Naukova Dumka, Kiev ( 1981 ). I5. V. G. Karpov, M. I. Klinger, and F. N. Ignat'ev, Zh. Eksp. Teor. Fiz. 84, 760 (1983) [Sov. Phys. JETP 57,439 (1983)]. 16.V. G. Karpov and D. A. Parshin, Zh. Eksp. Teor. Fiz. 88,2212 (1985) [Sov. Phys. JETP 61, 1308 (1985)]. 17. M. A. Il'in, V. G. Karpov, and D. A. Parshin, Zh. Eksp. Teor. Fiz. 92, 291 (1987) [Sov. Phys. JETP 65, 165 (1987)]. 18. M. A. Krivoglaz, Tr. Inst. Fiz. Akad. Nauk Est. SSR 59, 31 (1986). 19. M. A. Krivoglaz and I. P. Pinkevich, Fiz. Tverd. Tela 11, 96 (1969) [Sov. Phys. Solid State 11,69 ( 1969)]. 20. J. J. Freeman and A. C. Anderson, Phys. Rev. B 34, 5684 (1986). 21. J. M. Ziman, Models of Disorder, Cambridge University Press ( 1979) [Russ. transl., Mir, Moscow (1982)]. 22. B. P. Demidovich and I. A. Maron, Principles of Computational Mathematics, Fizmatgiz, Moscow (1963). 23. S. V. Maleev, Zh. Eksp. Teor. Fiz. 94, No. 1, 280 (1988) [Sov. Phys. JETP 67, 157 (1988)]. 24. J. B. Suck and H. Rudin, in: Glassy Metals11 (H. Beck and H. J. Guntherodt, eds.), Springer-Verlag, Berlin (1983), p. 217 [Russ. transl., Mir, Moscow ( 1986)].
dc.description.abstract A theory of the vibrational spectra of glasses, based on allowance for the statistical fluctuations of the local elastic constants, is proposed. The existence is established of two characteristic energies h, and h, , dividing the spectrum into regions of qualitatively different behavior of the density of states n (h). At low frequencices w 4 w, the increase of the density of states is determined by the additive contributions of phonons and mutually noninteracting quasilocal vibrations in random soft atomic potentials in the glass. In the intermediate region w , 5 w 5 w, the quasilocal vibrations interact strongly with phonons, and this makes their contributions superadditive. For w > w, the growth of n (h) slows down. As a result, n (h) increases at first more rapidly and then more slowly than the Debye density of states. An analytical expression for n (h) is obtained in the T-matrix formalism in the region w <a,, including the region of strong scattering. A numerical calculation of n (h) is performed in the coherent-potential approximation. The theory predicts qualitatively universal behavior of n (h) in different glasses. uk
dc.language.iso en uk
dc.publisher Springer uk
dc.subject theory of the vibrational spectra of glasses uk
dc.subject local elastic constants uk
dc.subject vibrational states uk
dc.subject glasses uk
dc.subject T-matrix formalism uk
dc.title Density of vibrational states in glasses uk
dc.type Article uk


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search DSpace


Advanced Search

Browse

My Account

Statistics