Abstract:
A theory of the vibrational spectra of glasses, based on allowance for the statistical fluctuations of
the local elastic constants, is proposed. The existence is established of two characteristic energies
h, and h, , dividing the spectrum into regions of qualitatively different behavior of the density
of states n (h). At low frequencices w 4 w, the increase of the density of states is determined by
the additive contributions of phonons and mutually noninteracting quasilocal vibrations in
random soft atomic potentials in the glass. In the intermediate region w , 5 w 5 w, the quasilocal
vibrations interact strongly with phonons, and this makes their contributions superadditive. For
w > w, the growth of n (h) slows down. As a result, n (h) increases at first more rapidly and
then more slowly than the Debye density of states. An analytical expression for n (h) is obtained
in the T-matrix formalism in the region w <a,, including the region of strong scattering. A
numerical calculation of n (h) is performed in the coherent-potential approximation. The
theory predicts qualitatively universal behavior of n (h) in different glasses.
Description:
1. W. A. Phillips, (ed.), Amorphous Solids: Low-Temperature Properties, (Springer, Berlin, 1981 ). 2. S. Hunklinger and A. K. Raychaudhuri, Prog. Low Temp. Phys. 9,267 (1986). 3. U. Buchenau, M. Prager, N. Nucker, A. J. Dianoux, N. Ahmad, and W. A. Phillips, Phys. Rev. B 34, 5665 (1986)
4. C. I. Nicholls and H. M. Rosenberg, J. Phys. C 17, 1165 (1984). 5. A. J. Dianoux, J. N. Page, and H. M. Rosenberg, Phys. Rev. Lett. 58,886 (1987). 6. R. H. Stolen, Phys. Chem. Glasses 11, No. 3, 89 ( 1970). 7. P. W. Anderson, B. I. Halperin, and C. M. Varma, Philos. Mag. 25, 1 (1972). 8. W. A. Phillips, J. Low Temp. Phys. 7, 351 (1972). 9. S. Alexander, C. Laermans, R. Orbach, and H. M. Rosenberg, Phys. Rev. B 28,4615 (1983). 10. A. Aharony, S. Alexander, 0. Entin-Wohlman, and R. Orbach, Phys. Rev. B 31,2565 ( 1985). 11. C. G. Montgomery, J. Low Temp. Phys. 39, 13 (1980). 12. I. M. Lifshitz, S. A. Gredskul, and L. A. Pastur, Introduction to the Theory of Disordered Systems [in Russian], Nauka, Moscow ( 1982). 13. A. A. Maradudin, E. W. Montroll, and G. H. Weiss, Theory of Lattice Dynamics in the Harmonic Approximation, Suppl. 3 to Solid State Phys., Academic Press, New York (1963) [Russ. transl., Mir, Moscow (1965)]. 14. A. M. Kosevich, Physical Mechanics of Real Crystals [in Russian], Naukova Dumka, Kiev ( 1981 ). I5. V. G. Karpov, M. I. Klinger, and F. N. Ignat'ev, Zh. Eksp. Teor. Fiz. 84, 760 (1983) [Sov. Phys. JETP 57,439 (1983)]. 16.V. G. Karpov and D. A. Parshin, Zh. Eksp. Teor. Fiz. 88,2212 (1985) [Sov. Phys. JETP 61, 1308 (1985)]. 17. M. A. Il'in, V. G. Karpov, and D. A. Parshin, Zh. Eksp. Teor. Fiz. 92, 291 (1987) [Sov. Phys. JETP 65, 165 (1987)]. 18. M. A. Krivoglaz, Tr. Inst. Fiz. Akad. Nauk Est. SSR 59, 31 (1986). 19. M. A. Krivoglaz and I. P. Pinkevich, Fiz. Tverd. Tela 11, 96 (1969) [Sov. Phys. Solid State 11,69 ( 1969)]. 20. J. J. Freeman and A. C. Anderson, Phys. Rev. B 34, 5684 (1986). 21. J. M. Ziman, Models of Disorder, Cambridge University Press ( 1979) [Russ. transl., Mir, Moscow (1982)]. 22. B. P. Demidovich and I. A. Maron, Principles of Computational Mathematics, Fizmatgiz, Moscow (1963). 23. S. V. Maleev, Zh. Eksp. Teor. Fiz. 94, No. 1, 280 (1988) [Sov. Phys. JETP 67, 157 (1988)]. 24. J. B. Suck and H. Rudin, in: Glassy Metals11 (H. Beck and H. J. Guntherodt, eds.), Springer-Verlag, Berlin (1983), p. 217 [Russ. transl., Mir, Moscow ( 1986)].