Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/4478
Назва: Machine learning approaches for financial time series forecasting
Автори: Derbentsev, Vasily
Matviychuk, Andriy
Datsenko, Nataliia
Bezkorovainyi, Vitalii
Azaryan, Albert
Ключові слова: financial time series
short-term forecasting
machine learning
support vector machine
random forest
gradient boosting
multilayer perceptron
Дата публікації: 26-жов-2020
Видавництво: CEUR Workshop Proceedings
Бібліографічний опис: Derbentsev V. Machine learning approaches for financial time series forecasting / Vasily Derbentsev, Andriy Matviychuk, Nataliia Datsenko, Vitalii Bezkorovainyi, Albert Azaryan // CEUR Workshop Proceedings. - Vol. 2713. - P. 434-450.
Короткий огляд (реферат): This paper is discusses the problems of the short-term forecasting of financial time series using supervised machine learning (ML) approach. For this goal, we applied several the most powerful methods including Support Vector Machine (SVM), Multilayer Perceptron (MLP), Random Forests (RF) and Stochastic Gradient Boosting Machine (SGBM). As dataset were selected the daily close prices of two stock index: SP 500 and NASDAQ, two the most capitalized cryptocurrencies: Bitcoin (BTC), Ethereum (ETH), and exchange rate of EUR-USD. As features we used only the past price information. To check the efficiency of these models we made out-of-sample forecast for selected time series by using one step ahead technique. The accuracy rates of the forecasted prices by using ML models were calculated. The results verify the applicability of the ML approach for the forecasting of financial time series. The best out of sample accuracy of short-term prediction daily close prices for selected time series obtained by SGBM and MLP in terms of Mean Absolute Percentage Error (MAPE) was within 0.46-3.71 %. Our results are comparable with accuracy obtained by Deep learning approaches.
URI (Уніфікований ідентифікатор ресурсу): http://ceur-ws.org/Vol-2713/paper47.pdf
http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/4478
https://doi.org/10.31812/123456789/4478
ISSN: 1613-0073
Розташовується у зібраннях:Збірники наукових праць та матеріали конференцій

Файли цього матеріалу:
Файл Опис РозмірФормат 
paper47.pdfarticle3.35 MBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.