Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал:
http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/4478
Повний запис метаданих
Поле DC | Значення | Мова |
---|---|---|
dc.contributor.author | Derbentsev, Vasily | - |
dc.contributor.author | Matviychuk, Andriy | - |
dc.contributor.author | Datsenko, Nataliia | - |
dc.contributor.author | Bezkorovainyi, Vitalii | - |
dc.contributor.author | Azaryan, Albert | - |
dc.date.accessioned | 2021-09-07T17:31:19Z | - |
dc.date.available | 2021-09-07T17:31:19Z | - |
dc.date.issued | 2020-10-26 | - |
dc.identifier.citation | Derbentsev V. Machine learning approaches for financial time series forecasting / Vasily Derbentsev, Andriy Matviychuk, Nataliia Datsenko, Vitalii Bezkorovainyi, Albert Azaryan // CEUR Workshop Proceedings. - Vol. 2713. - P. 434-450. | uk |
dc.identifier.issn | 1613-0073 | - |
dc.identifier.uri | http://ceur-ws.org/Vol-2713/paper47.pdf | - |
dc.identifier.uri | http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/4478 | - |
dc.identifier.uri | https://doi.org/10.31812/123456789/4478 | - |
dc.description.abstract | This paper is discusses the problems of the short-term forecasting of financial time series using supervised machine learning (ML) approach. For this goal, we applied several the most powerful methods including Support Vector Machine (SVM), Multilayer Perceptron (MLP), Random Forests (RF) and Stochastic Gradient Boosting Machine (SGBM). As dataset were selected the daily close prices of two stock index: SP 500 and NASDAQ, two the most capitalized cryptocurrencies: Bitcoin (BTC), Ethereum (ETH), and exchange rate of EUR-USD. As features we used only the past price information. To check the efficiency of these models we made out-of-sample forecast for selected time series by using one step ahead technique. The accuracy rates of the forecasted prices by using ML models were calculated. The results verify the applicability of the ML approach for the forecasting of financial time series. The best out of sample accuracy of short-term prediction daily close prices for selected time series obtained by SGBM and MLP in terms of Mean Absolute Percentage Error (MAPE) was within 0.46-3.71 %. Our results are comparable with accuracy obtained by Deep learning approaches. | uk |
dc.language.iso | en | uk |
dc.publisher | CEUR Workshop Proceedings | uk |
dc.subject | financial time series | uk |
dc.subject | short-term forecasting | uk |
dc.subject | machine learning | uk |
dc.subject | support vector machine | uk |
dc.subject | random forest | uk |
dc.subject | gradient boosting | uk |
dc.subject | multilayer perceptron | uk |
dc.title | Machine learning approaches for financial time series forecasting | uk |
dc.type | Article | uk |
Розташовується у зібраннях: | Збірники наукових праць та матеріали конференцій |
Файли цього матеріалу:
Файл | Опис | Розмір | Формат | |
---|---|---|---|---|
paper47.pdf | article | 3.35 MB | Adobe PDF | Переглянути/Відкрити |
Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.