Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/3611
Назва: Construction of crisis precursors in multiplex networks
Автори: Соловйов, Володимир Миколайович
Соловйова, Вікторія Володимирівна
Тулякова, А. Ш.
Ключові слова: stock markets
graph theory
complex networks
Дата публікації: 2019
Видавництво: Atlantis Press
Бібліографічний опис: Soloviev V. Construction of crisis precursors in multiplex networks [Electronic resource] / Vladimir Soloviev, Viktoria Solovieva, Anna Tuliakova // Proceedings of the 2019 7th International Conference on Modeling, Development and Strategic Management of Economic System (MDSMES 2019) / Editors : Liliana Horal, Vladimir Soloviev, Andriy Matviychuk, Inesa Khvostina. – P. 361-366. – (Advances in Economics, Business and Management Research, volume 99). – DOI : 10.2991/mdsmes-19.2019.68. – Access mode : https://download.atlantis-press.com/article/125919245.pdf
Короткий огляд (реферат): Based on the network paradigm of complexity in the work, a systematic analysis of the dynamics of the largest stock markets in the world has been carried out. According to the algorithms of the visibility graph and recurrence plot, the daily values of stock indices are converted into a multiplex networks, the spectral and topological properties of which are sensitive to the critical and crisis phenomena of the studied complex systems. It is shown that some of the spectral and topological characteristics can serve as measures of the complexity of the stock market, and their specific behaviour in the pre-crisis period is used as indicators-precursors of crisis phenomena.
Опис: [1] G. G. Malinetskii, "Theory of self-organization. On the cusp of IV paradigm". Computers Research and Modeling, vol. 5, No 3, pp. 315 – 366, 2013. [2] I. Prigogine, "From Being to Becoming: Time and Complexityin thePhysical Sciences", – 1980. Publisher: W H Freeman & Co, p. 272. [3] A. Barrat, M. Barthelemy and A. Vespignani, "Dynamical processes on complex networks ", CambridgeUniversity Press, 347 p., 2008. [4] S. Halvin and R. Cohen, "Complex networks. Structure, robustness and function", CambridgeUniversity Press, 238 p. , 2010. [5] R. Albert and A.-L. Barabasi, "Statistical Mechanics of Complex Networks", Rev. Mod. Phys., vol.74, pp. 47 – 97, 2002. [6] M. Newman, D. Watts and A.-L. Barabási, "The Structure and Dynamics of Networks", Princeton University Press, p. 456, 2006. [7] M. E. J. Newman, "The structure and function of complex networks", SIAM Reviews, vol. 45(2), pp. 167 – 256, 2003. [8] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez and D.-U. Hwang, "Complex networks: Structure and dynamics", Phys. Rep., vol. 424, pp. 175 – 209, 2006. [9] G. Bianconi, "Interdisciplinary and physics challengesin network theory", Europhysics Letters, vol. 11, No 5, pp. 1 – 7, 2015. [10] V. Soloviev and A. Belinskij, “Complex Systems and Crashes of Cryptocurrency Market”, In: Ermolayev, V., Suárez-Fgueroa, M., Yakovyna, V., Mayr, H., Nikitchenko, M., Spivakovsky, A. (eds.) on ITC in Education, Research, and Industrial Applications. CCIS, vol 1007, pp 276-297. Springer, Cham, 2018. [11] V. Soloviev and A. Belinskij, “Methods of nonlinear dynamics and the construction of cryptocurrency crisis phenomena precursors”, In: Ermolayev V., Suárez-Figueroa M.C. et al. (eds.) Proceedings of the 14th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer, Vol. II: Workshops, Kyiv, Ukraine, May 14-17, 2018. CEUR Workshop Proceedings, pp. 116–127, 2014,.http://ceurws.org/Vol-2104/paper_175.pdf (2018). Accessed 30 Sep. 2018. [12] S. Boccaletti, G. Bianconi, R. Criado et al., "The structure and dynamics of multilayer networks", Phys. Rep., vol. 544, No 1. pp. 1– 122, 2014. [13] L. Lacasa, B. Luque and F. Ballesteros et al. "From time series to complex networks: The visibility graph", PNAS., vol. 105, No 13, pp. 4972 – 4975, 2008. [14] R.V. Donner, M. Small, J.F. Donges and N. Marwan et al., "Recurrence-based time series analysis by means of complex network methods ", Retrieved from http: arXiv:1010.6032v1 [nlin.CD] 25 Oct. 2010. [15] V. Soloviev and A. Tuliakova “Graphodinamical Research Methods for Complexity of Modern Stock Markets”, Neuro-Fazzy Technologies of Modeling in Economy, No 5, pp. 152–179, 2016. [in Ukrainian]. [16] V. Soloviev, A. Tuliakova and V. Solovieva, “Visibility graphs and precursors of stock crashes”, Neuro-Fazzy Technologies of Modeling in Economy, 2019, in press. [17] B. Luque, L. Lacasa, F. Ballesteros and J. Luque, "Horizontal visibility graphs: Exact results for random time series", Phys. Rev.E., vol. 80, p. 046103, 2009. doi:https://doi.org/10.1103/PhysRevE.80.046103. [18] L. Lacasa, V. Nicosia and V. Latora, "Network structure of multivariate time series", Scientific Reports, pp. 1 – 9, 2015. doi: 10.1038/srep15508. [19] L. Bargigli, G. Di Iasio, L. Infante, F. Lillo and F. Pierobon, "The multiplex structure of interbank networks", Retrieved from http: arXiv:1311.4798v1 [q-fin.GN] 19 Nov. 2013. [20] N. Musmeci, V. Nicosia, T. Aste, T. Di Matteo and V. Latora, "The multiplex dependency structure of financial markets", Complexity,– pp. 1 – 13, 2017. doi: 10.1155/2017/9586064. [21] S. Li and S. Wen, "Multiplex Networks of the Guarantee Market: Evidence from China", Complexity, pp. 1 - 7, 2017. doi:https://doi.org/10.1155/2017/9781890. [22] C. Stephen, "Dynamic Phase and Group Detection in Pedestrian Crowd Data Using Multiplex Visibility Graphs", Procedia Computer Science, vol. 53, pp. 410 – 419, 2015. [23] Stock market indices, Retrieved from: http:// finance.yahoo.com [24] S.P. Chatzis, V. Siakoulis, A. Petropoulos, E. Stavroulakis and N. Vlachogiannakis, “Forecasting stock market crisis events using deep and statistical machine learning techniques”, Expert Systems With Applications, vol. 112, pp. 353–371, 2018.
URI (Уніфікований ідентифікатор ресурсу): http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/3611
https://doi.org/10.2991/mdsmes-19.2019.68
ISBN: 978-94-6252-800-0
ISSN: 2352-5428
Розташовується у зібраннях:Кафедра інформатики та прикладної математики

Файли цього матеріалу:
Файл Опис РозмірФормат 
MDSMES_2019_paper_81.pdfArticle2.84 MBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.