Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/4131
Назва: Lyapunov Exponents as Indicators of the Stock Market Crashes
Автори: Соловйов, Володимир Миколайович
Bielinskyi, Andrii
Serdyuk, Oleksandr
Solovieva, Victoria
Семеріков, Сергій Олексійович
Ключові слова: complex dynamic systems
unstable
chaotic
recurrence plot
Lyapunov exponents
stock market crash
indicator of the crash
Дата публікації: 8-лис-2020
Видавництво: Oleksandr Sokolov, Grygoriy Zholtkevych, Vitaliy Yakovyna, Yulia Tarasich, Vyacheslav Kharchenko, Vitaliy Kobets, Olexandr Burov, Serhiy Semerikov, Hennadiy Kravtsov
Бібліографічний опис: Soloviev V. Lyapunov Exponents as Indicators of the Stock Market Crashes [Electronic resource] / Vladimir Soloviev, Andrii Bielinskyi, Oleksandr Serdyuk, Victoria Solovieva, Serhiy Semerikov // ICTERI 2020: ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer 2020 : Proceedings of the 16th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer. Volume II: Workshops. Kharkiv, Ukraine, October 06-10, 2020 / Edited by : Oleksandr Sokolov, Grygoriy Zholtkevych, Vitaliy Yakovyna, Yulia Tarasich, Vyacheslav Kharchenko, Vitaliy Kobets, Olexandr Burov, Serhiy Semerikov, Hennadiy Kravtsov // CEUR Workshop Proceedings. – 2020. – Vol. 2732. – Pp. 455-470. – Access mode : http://ceur-ws.org/Vol-2732/20200455.pdf
Короткий огляд (реферат): The frequent financial critical states that occur in our world, during many centuries have attracted scientists from different areas. The impact of similar fluctuations continues to have a huge impact on the world economy, causing instability in it concerning normal and natural disturbances [1]. The an- ticipation, prediction, and identification of such phenomena remain a huge chal- lenge. To be able to prevent such critical events, we focus our research on the chaotic properties of the stock market indices. During the discussion of the re- cent papers that have been devoted to the chaotic behavior and complexity in the financial system, we find that the Largest Lyapunov exponent and the spec- trum of Lyapunov exponents can be evaluated to determine whether the system is completely deterministic, or chaotic. Accordingly, we give a theoretical background on the method for Lyapunov exponents estimation, specifically, we followed the methods proposed by J. P. Eckmann and Sano-Sawada to compute the spectrum of Lyapunov exponents. With Rosenstein’s algorithm, we com- pute only the Largest (Maximal) Lyapunov exponents from an experimental time series, and we consider one of the measures from recurrence quantification analysis that in a similar way as the Largest Lyapunov exponent detects highly non-monotonic behavior. Along with the theoretical material, we present the empirical results which evidence that chaos theory and theory of complexity have a powerful toolkit for construction of indicators-precursors of crisis events in financial markets.
Опис: 1. Sornette, D.: Why Stock Markets Crash: Critical Events in Complex Systems. Princeton University Press. (2003). 2. Chen, L., Qiao, Z., Wang, M., Wang C., Du, R., Stanley, H. E.: Which Artificial Intelligence Algorithm Better Predicts the Chinese Stock Market? In: IEEE Access 6, 48625- 48633. IEEE Press, New York (2018). doi: 10.1109/ACCESS.2018.2859809 3. Chong, E., Han, C., Park, F.C.: Deep learning networks for stock market analysis and prediction: Methodology, data representations, and case studies. Expert Systems With Applications 83, 187-205 (2017). 4. Franses, P.H., Dijk D.V.: Forecasting Stock Market Volatility Using (Non-Linear) Garch Models. Journal of Forecasting 15, 229-235 (1996). doi: 10.1002/(SICI)1099- 131X(199604)15:3<229::AID-FOR620>3.0.CO;2-3 5. Pan, H., Zhang, Z.: Forecasting Financial Volatility: Evidence from Chinese Stock Market. Durham Business School Working Paper Series 6(2), 1-31 (2006). doi:10.2139/ssrn.903937 6. Li, S.I., Yoo, S.J.: Multimodal Deep Learning for Finance: Integrating and Forecasting International Stock Markets. https://arXiv:1903.06478v1 [q-fin.CP] ( 2019). 7. Brailsford, T.J., Faff, R.W.: An Evaluation of Volatility Forecasting Techniques, Journal of Banking and Finance 20, 419-438 (1996). 8. Zemba, W.T., Lileo, S., Zhitlukhin, M.: Stock Market Crashes: Predictable and Unpredictable and What to Do About Them. World Scientific (2018). 9. Zeman M.: A comparative analysis of 1997 East Asian Tigers crisis and EU sovereign debt crisis, Main study cases: Thailand and Greece, University of Vienna (2013). 10. Mattarocci G.: Market Characteristics and Chaos Dynamics in Stock Markets: An International Comparison. SSRN Electronic Journal (2006). doi: 10.2139/ssrn.928796 11. Hsieh, D.A.: Chaos and Nonlinear Dynamics: Application to Financial Markets. The Journal of Finance 46, 1839–1877 (1991). 12. Stutzer, M.J.: Chaotic dynamics and bifurcation in a macro model. Journal of Economic Dynamics and Control 2(1), 353-376 (1980). doi: 10.1016/0165-1889(80)90070-6 13. Hesieh, D.A.: Testing for Nonlinear Dependence in Daily Foreign Exchange Rates. The Journal of Business 62(3), 339-368 (1989). 14. Lim, K.P., Liew, K.S.: Testing for Non-Linearity in ASEAN Financial Markets. (2003). 15. Chen, L.: On the Chaotic Dynamics Analysis of China Stock Market. In: Proceedings of the 9th International Conference for Young Computer Scientists, pp 3011-3015. IEEE Press, New York (2008). doi: 10.1109/ICYCS.2008.392 16. De Grauwe, P., Vansteenkiste I.: Exchange rates and fundamentals A non-linear relationship? International Journal Finance Economics 12(1), 37-54 (2007). doi: 10.1002/ijfe.310 17. Scheinkman, J.A., LeBaron, B.: Nonlinear Dynamics and Stock Returns. Journal of Business 62(3), 311-337 (1989). doi: 10.1086/296465 18. Abarbanel, H.D.I.: Analysis of Observed Chaotic Data. Springer-Verlag, New York (1996). doi: 10.1007/978-1-4612-0763-4 19. Kulkarni, S.V.: Complexity, Chaos, and the Duffing-Oscillator Model: An Analysis of Inventory Fluctuations in Markets. arXiv:1308.1616v1 [q-fin.GN] 24 Jul 2013 20. Bajo-Rubio, O., Fernández-Rodríguez, F., Sosvilla-Rivero, S.: Chaotic behaviour in exchange-rate series: First results for the Peseta-U.S. Dollarcase. Economics Letters 39, 207- 211 (1992). doi: 10.1016/0165-1765(92)90291-6 21. Dechert, W., Gençay, R.: Lyapunov Exponents as a Nonparametric Diagnostic for Stability Analysis. Journal of Applied Econometrics 7, 41-60 (1992). doi: 10.1002/jae.3950070505 22. Gençay, R.: A statistical framework for testing chaotic dynamics via Lyapunov exponents. Physica D 89, 261-266 (1996). 23. Sarkar S., Chadha V.: Analysing the Behaviour of Local Hurst Exponent and Lyapunov Exponent for Prediction of Market Crashes. World Academy of Science, Engineering and Technology International Journal of Economics and Management Engineering 13(4), (2019). 24. Srinivasan, S., Prasad, S., Patil, S., Lazarou G., Picone, J.: Estimation of Lyapunov Spectra from a Time Series. In: Proceedings of the IEEE SoutheastCon 2006, pp. 192-195. IEEE Press, New York (2006). doi: 10.1109/second.2006.1629348 25. Mastroeni, L., Vellucci, P.: "Chaos" in energy and commodity markets: a controversial matter arXiv:1611.07432v2 [q-fin.ST] 29 Mar 2017 26. Plakandaras, V., Gupta, R., Wohar, M.E.: Persistence of economic uncertainty: a comprehensive analysis. Applied Economics 51(41), 4477-4498 (2019). doi: 10.1080/00036846.2019.1591607 27. Chakrabarti, G., Sen, C.: Anatomy of Global Stock Market Crashes. SpringerBriefs in Economics, Springer India (2012). doi: 10.1007/978-81-322-0463-3 28. Soloviev, V., Belinskij, A.: Methods of nonlinear dynamics and the construction of cryptocurrency crisis phenomena precursors. In: Ermolayev, V., Suárez-Figueroa, M.C., Yakovyna, V., Kharchenko, V., Kobets, V., Kravtsov, H., Peschanenko, V., Prytula, Y., Nikitchenko, M., Spivakovsky, A. (eds.) Proceedings of the 14th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer. Volume II: Workshops, Kyiv, Ukraine, May 14-17, 2018. CEUR Workshop Proceedings, vol. 2014, pp. 116–127. http://ceur-ws.org/Vol2104/paper_175.pdf. Accessed 24 Mar 2019 29. Soloviev, V., Belinskij, A.: Complex Systems Theory and Crashes of Cryptocurrency Market. In book: Information and Communication Technologies in Education, Research, and Industrial Applications. 14th International Conference, ICTERI 2018, Kyiv, Ukraine, May 14-17, 2018, Revised Selected Papers. Communications in Computer and Information Science 2019, vol. 1007, pp. 276-297. https://link.springer.com/chapter/10.1007/978-3- 030-13929-2_14. 30. Soloviev, V., Belinskij, A., Solovieva, V.: Entropy analysis of crisis phenomena for DJIA index. In: Ermolayev, V., Mallet, Yakovyna, V., Kharchenko, V., Kobets, V., Kornilowicz, A., Kravtsov, Nikitchenko, M., Semerikov, S., Spivakovsky, A. (eds.) Proceedings of the 15th International Conference on ICT in Education, Research and Industrial Applications. Integration, Harmonization and Knowledge Transfer. Volume II: Workshops, Kherson, Ukraine, June 12-15, 2019. CEUR Workshop Proceedings, vol. 2393, pp. 434– 449. http://ceur-ws.org/Vol-2393/paper_375.pdf. 31. Belinskyi, A., Soloviev, V., Semerikov, S., Solovieva, V.: Detecting stock crashes using Levy distribution. In: Kiv, A., Semerikov, S., Soloviev, V., Kibalnik, L., Danylchuk, H., Matviychuk, A. (eds) Proceedings of the Selected Papers of the 8th International Conference on Monitoring, Modeling & Management of Emergent Economy (M3E2- EEMLPEED 2019) Odessa, Ukraine, May 22-24, 2019. CEUR Workshop Proceedings, vol. 2422, pp. 420–433. http://ceur-ws.org/Vol-2422/paper_34.pdf. 32. Nychka, D., Ellner, S., Gallant, A.R., McCaffrey, D.: Finding chaos in noisy system. Journal of the Royal Statistical Society. 54(2), 399-426 (1992). doi: 10.2307/2346135 33. Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from a time series. Phys. D Nonlinear Phenomena. 16(3), 285–317 (1985). doi: 10.1016/0167-2789(85)90011-9 34. Sano, M., Sawada, Y.: Measurement of the Lyapunov spectrum from a chaotic time series. Phys. Rev. Lett. 55(10), 1082–1085 (1985). doi: 10.1103/PhysRevLett.55.1082 35. Eckmann, J. P., Kamphorst, S. O., Ruelle, D., Ciliberto, S.: Liapunov exponents from time series. Physical Review A, 34(6) (1986). doi: 10.1103/PhysRevA.34.4971 36. Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Phys. 65(1–2), 117–134 (1993). doi: 10.1016/0167-2789(93)90009-P 37. Parlitz, U.: Identification of true and spurious Lyapunov exponents from time series. Int. J. Bifurc. Chaos. 2(1), 155–165 (1992). 38. Balcerzak, M., Pikunov, D., Dabrowski, A.: The fastest, simplified method of Lyapunov exponents spectrum estimation for continuous-time dynamical systems. Nonlinear Dyn. 94, 3053-3065 (2018). doi: 10.1007/s11071-018-4544-z 39. Eckmann, J.-P., Kamphorst, S.O., Ruelle, D.: Recurrence plots of dynamical systems, Europhys. Lett. 5, 973–977 (1987). 40. Takens F: Detecting strange attractors in turbulence. Springer, Coventry, England (1981). 41. Wilkinson, J. H., Reinsch, C.: Linear Algebra. Springer-Verlag, Berlin (1971). 42. Recurrence Plots and Their Quantifications: Expanding Horizons. Webber C.L., Marwan N.(eds.). Proceedings of the 6th International Symposium on Recurrence Plots, Grenoble, France, 17–19 June 2015, 180, 1-387. Springer, Heidelberg (2016). 43. Marwan, N., Romano, M.C., Theil, M, Kurths, J.: Recurrence plot for the analysis of complex systems. Phys. Rep. 438, 237–329 (2007). 44. Gao, J., Hu, J., Tung, W.-W., Zheng, Y.: Multiscale analysis of economic time series scale-dependent Lyapunov exponent. Quantitative Finance 13(2), 1-10 (2011).
URI (Уніфікований ідентифікатор ресурсу): http://ceur-ws.org/Vol-2732/20200455.pdf
http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/4131
https://doi.org/10.31812/123456789/4131
ISSN: 1613-0073
Розташовується у зібраннях:Кафедра інформатики та прикладної математики

Файли цього матеріалу:
Файл Опис РозмірФормат 
20200455.pdfarticle1.28 MBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.