Будь ласка, використовуйте цей ідентифікатор, щоб цитувати або посилатися на цей матеріал: http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/4286
Назва: The Total Content of Macronutrients and Heavy Metals in the Soil on Devastated Lands at Kryvyi Rih Iron Mining & Metallurgical District (Ukraine)
Інші назви: Валовий вміст макронутрієнтів та важких металів у ґрунтах девастованих земель Криворізького залізорудного гірничо-металургійного регіону (Україна)
Автори: Савосько, Василь Миколайович
Бєлик, Юлія Віліївна
Лихолат, Юрій Васильович
Хайльмейер, Герман
Григорюк, Іван Панасович
Хромих, Ніна Олександрівна
Лихолат, Тетяна Юріївна
Ключові слова: soil
devastated lands
waste rock dumps
macronutrients
heavy metals
gross forms
phytotoxicants
phyto-optimization
грунт
спустошені землі
відвали гірських порід
макроелементи
важкі метали
валові форми
фітотоксиканти
фіто-оптимізація
Дата публікації: 2021
Бібліографічний опис: Savosko, V., Bielyk, Y., Lykholat, Y., Heilmeier, H., Grygoryuk, I., Khromykh, N., & Lykholat, T. (2021). The Total Content of Macronutrients and Heavy Metals in the Soil on Devastated Lands at Kryvyi Rih Iron Mining & Metallurgical District (Ukraine). Journal of Geology, Geography and Geoecology, 30 (1), 153-164. https://doi.org/https://doi.org/10.15421/112114
Короткий огляд (реферат): The relevance of the research is due to the need to develop technologies for phytoremediation of the devastated lands in the mining and metallurgical regions of Ukraine and the world. In this regard, the creation of tree plantations adapted to the ecological conditions of such territories is considered by many experts as the most promising option for innovative technologies. However, the development of artificial woodlands requires knowledge of the pedogeochemical character- istics of devastated lands. The aim of the work was to carry out a comparative analysis of the macronutrients and heavy metals gross forms content in the soils of the devastated lands of the Kryvyi Rih mining and metallurgical region. The field studies focused on five contrasting monitoring sites of the Petrovsky dump (Central Kryvorizhzhya), which has a typical age and composition of rocks for the region. Soil sampling, drying, sieving, and sample preparation (sintering in a muffle furnace) were done in accordance with classical techniques. The concentrations of macronutrients (potassium, sodium, calcium, magnesium, sulfur, and phosphorus) and heavy metals (iron, manganese, zinc, copper, lead, and cadmium) were determined using an Inductively Coupled Plasma Mass Spectrometry (ICP- MS) X-Series 2 (Thermo Fisher Scientific, USA). The analytical part of our research was carried out on the basis of the laboratory of the Institute of Biosciences, Freiberg University of Technology and Mining Academy (Freiberg, Germany). At monitoring sites, significant differences were found in the content of macronutrients gross forms, and their variation relative to the control values as well. Potassium and sodium concentrations generally differed slightly or were close to control levels. The results of determining the content of calcium, magnesium and phosphorus indicate a significant deficiency or excess of these macronutrients in the soils of the devastated lands. An increased sulfur content was found in the soils of all monitoring sites, in some cases 4 times higher than the control level. The measured content of gross forms of iron, manganese, copper, cadmium and, partially, zinc in the soils of different monitoring sites exceeded the control values by 5.5 – 5.9 times. Thus, the analysis of the research results made it possible to establish that the soils of the devastated lands of the Petrovsky dump are characterized by unfavorable properties for the growth of most species of woody plants.
Опис: Adams, M. B. (ed.), 2017. The forestry reclamation approach: guide to successful reforestation of mined lands. U.S. Department of Agriculture, Forest Service, Northern Research Station. https://doi. org/10.2737/NRS-GTR-169 Adriano, D. C., 2001. Trace Elements in the Terrestrial Environments. Biogeochemistry. Bioavailability and Risks of Metals. Springer-Verlag. Alekseenko, V. A., 2000. Ekologicheskaya geohimiya [Ecological geochemistry]. Logos. (in Russian) Antoniadisa,V., Levizoua, E., Shaheenb, S. M., Okc, Y. S., Sebastiand, A., Baume, C., Prasadd, M. N. V., Wenzelf, W. W., & Rinklebeg, J., 2017. Trace elements in the soil-plant interface: phytoavailability, translocation, and phytoremediation – a review. Earth-Science Reviews, 171, 621-645. https://doi.org/10.1016/j.earscirev.2017.06.005 Bielyk, Yu. V., Savosko, V. M., & Lykholat, Yu. V., 2019. Taksonomichnyi sklad ta synantropna kharakterystyka derevno-chaharnykovykh uhrupovan Petrovskoho vidvalu (Kryvorizhzhia). [Taxonomic composition and synanthropic characteristic of woody plant community on Petrovsky waste rock dumps (Kryvorizhzhya)]. Ekolohichnyi visnyk Kryvorizhzhia [Ecological Bulletin of Kryvyi Rih District], 4, 104–113. https://doi.org/10.31812/ eco-bulletin-krd.v4i0.2565 (in Ukrainian) Bradl, H. B., 2005. Sources and Origins of Heavy Metals. In H. B. Bradl (ed.) Heavy Metals in the Environment (vol 6, pp. 1-14). Elsevier academic press. Chertko, N. K., & Chertko, E. N., 2008. Geohimiya i ekologiya himicheskih elementov [Geochemistry and ecology of chemical elements]. Publishing Center of the Belarusian State University. (in Russian) Ding, Y., Mokhberdoran, F., & Xie, Y., 2015. Heavy metal stress and some mechanisms of plant defense response. Scientific World Journal, 2015. http:// dx.doi.org/10.1155/2015/756120 Dobrovolskij, V. V., 2003. Osnovy biogeohimii [Fundamentals of biogeochemistry]. Academy Publishing Center. (in Russian) Gryshko, V. M., Syshchykov, D. V., Piskova, O. M., Danilchuk, O. V., & Mashtaler, N. V., 2012. VazhkI metali: nadhodzhennya u grunti, trans lokatsIya u roslinah ta ekologIchna bezpeka. [Heavy metals: entering to soil, translocation in plants and ecological danger]. Donbas. (in Ukrainian) Kabata-Pendias, A., 2011. Trace elements in soils and plants. Taylor and Francis Group. Khalid, S., Shahid, M., Niazi, N. K., Murtaza, B., Bibi, I., & Dumat, C., 2017. A comparison of technologies for remediation of heavy metal contaminated soils. Journal of Geochemical Exploration, 182, 247-268. https://doi.org/10.1016/j.gexplo.2016.11.021 Khromykh, N., Lykholat, Y., Shupranova, L., Kabar, A., Didur, O., Lykholat, T., & Kulbachko, Y., 2018. Interspecific differences of antioxidant ability of introduced Chaenomeles species with respect to adaptation to the steppe zone conditions. Biosystems Diversity, 26(2), 132–138. doi: 10.15421/011821 Kivinen, S., 2017. Sustainable post-mining land use: are closed metal mines abandoned or re-used space? Sustainability, 9, 1705. https://doi.org/10.3390/ su9101705 Komarova, I. О., 2015a. Buferni vlastyvosti gruntiv yak pokaznyk zabrudnennia vazhkymy metalamy edafotopiv Kryvorizkoi urboekosystemy [Buffer properties as index of edaphotope heavy metal pollution of Kryvyi Rih urban ecosystems]. Ahroekolohichnyi zhurnal [Agroecological journal], 4, 34-44. (in Ukrainian) Komarova, I. O., 2015b. Osoblyvosti funktsionuvannia roslynnoho orhanizmu v urbotekhnohennii ekosystemi (analiz stanu problemy) [Features of functioning of the plant organism in the urbatehnogennoy ekosistemme (the analysis of the problem)]. Pytannia bioindykatsii ta ekolohii [Problems of Bioindication and Ecology], 20 (2), 18-29. (in Ukrainian) Lykholat, T. Yu., Lykholat, O. A., Marenkov, O. M., Kulbachko, Yu. L., Kovalenko, I. M. & Didur, O. O., 2019. Xeneostrogenes influence on cholinergic regulation in female rats of different age. Ukrainian Journal of Ecology, 9(1), 240–243. Lykholat, T., Lykholat, O., & Antonyuk, S., 2016. Immunohistochemical and biochemical analysis of mammary gland tumours of different age patients. T︠ S ︡ itologii︠ a︡ i genetika, 50(1), 40-51. DOI: 10.3103/S0095452716010072 Maathuis, F. J. M., 2019. Physiological functions of mineral macronutrients. Current Opinion in PlantBiology, 12, 250-258. https://doi.org/10.1016/j. pbi.2009.04.003 Macdonald, S. E., Landhausser, S. M., Skousen, J., Franklin, J., Frouz, J., Hall, S., Jacobs, D., & Quideau, S., 2015. Forest restoration following surface mining disturbance: challenges and solutions. New Forests, 46, 703–732. https://doi.org/10.1007/ s11056-015-9506-4 Masiuk, O., Kharytonov, M., & Stankevich, S., 2020. Remote and ground-based observations of land cover restoration after forest reclamation within a brown coal basin. Journal of Geology, Geography and Geoecology, 29 (1), 135-145. https://doi.org/ https://doi.org/10.15421/112012 McDonald, J. H., 2014. Handbook of biolological statistics. Sparky house publishing. Nazarenko M.M. & Lykholat Y.V., 2018. Influence of relief conditions on plant growth and development. Dniprop. Univer.bulletin. Geology, geography, 26(1). 143-149. doi: 10.15421/111815 Nazarenko, M., Lykholat, Y., Grigoryuk, I., & Khromykh, N., 2018. Optimal doses and concentrations of mutagens for winter wheat breeding purposes. Part I. Grain productivity. Journal of Central European Agriculture, 19(1), 194–205. DOI: /10.5513/JCEA01/19.1.2037 Orlov, D. S., 1992. Himiya pochv [Chemistry of soil]. Moscow University Publishing House. (in Russian) Palchykov, V., Khromykh, N., Lykholat, Y., Mykolenko, S., Lykholat, T., 2019. Synthesis and Plant Growth Regulatory Activity of 3-Sulfolene Derivatives. Chemistry & Chemical Technology, 13, 4, 424- 428. https://doi.org/10.23939/chcht13.04.424 Pansu, M., & Jacques, G., 2006. Handbook of Soil Analysis. Springer. Perelman, A. I., 1989. Geohimiya. [Geochemistry]. High school. (in Russian) Pertseva, T., Lykholat, O., & Gurzhiy, O., 2012. Influence of tiotropium bromide (TB) and carbocysteine (C) on mucociliary clearance (MCC) in patients with COPD. European Respiratory Journal, 40(56), 3466. Pietrzykowski, M., 2019. Tree species selection and reaction to mine soil reconstructed at reforested postmine sites: Central and eastern European experiences. Ecological Engineering: X, 3, 100012. https://doi.org/10.1016/j.ecoena.2019.100012 Podolyak, A. G., & Karpenko, A. F., 2019. Med v pahotnoy I lugovoy pochve Gomelschinyi [Copper in arable and meadow soils of Gomel region]. Ekolohichnyi visnyk Kryvorizhzhia [Ecological Bulletin of Kryvyi Rih District], 4, 56–66. https:// doi.org/10.31812/eco-bulletin-krd.v4i0.2560 (in Russian) Pogrzeba, M., Krzyżak, J., Rusinowski, S., McCalmont, J. P., & Jensen, E., 2019. Energy crop at heavy metal-contaminated arable land as an alternative for food and feed production: biomass quantity and quality. In: G. Sablok (eds) Plant Metallomics and Functional Omics (pp 1-21). Springer. https://doi. org/10.1007/978-3-030-19103-0_1 Pokhylenko, A., Lykholat, O., Didur, O., Kulbachko, Y. & Lykholat, T., 2019. Morphological variability of Rossiulus kessleri (Diplopoda, Julida) from different biotopes within Steppe Zone of Ukraine. Ukrainian Journal of Ecology, 9(1), 176–182 Ranjan, V., Sen, P., Kumar, D., & Singh, B., 2016. Reclamation and rehabilitation of waste dump by eco-restoration techniques at Thakurani iron ore mines in Odisha. International Journal of Mining and Mineral Engineering, 7 (3), 253-264. https:// doi.org/10.1504/IJMME.2016.078372 Savosko, V. M., 2011. Melioracija ta fitorekultyvacija zemel navčalnyj posibnyk [Land Melioration and Phytorecultivation manual]. Dionis. (in Ukraine) Savosko, V. M., & Tovstolyak, N. V., 2017. Ecological conditions of garden and park territories of former iron mines (Kryvyi Rih Basin, Ukraine). Ukrainian Journal of Ecology, 7 (4), 12–17. Retrieved from https://www.ujecology.com/articles/ecological-conditions-of-garden-and-park-territories-offormer-iron-mines-kryvyi-rih-basin-ukraine.pdf Savosko, V. M., Lykholat, Y. V., Bielyk, Yu. V., & Lykholat, T. Y., 2019b. Ecological and geological determination of the initial pedogenesis on devastated lands in the Kryvyi Rih Iron Mining & Metallurgical District (Ukraine). Journal of Geology, Geography and Geoecology, 28 (4), 738-746. https:// doi.org/10.15421/111969 Savosko, V. M., Lykholat, Yu. V., Bielyk, Yu. V., & Grygoryuk, I. P., 2019a. Apofitni ta adventyvni derevni vydy na devastovanykh zemliakh hranitnykh karieriv Kryvorizhzhia [Apophyte and adventives woody species in granite quarry devastated land at Kryvyi Rih district]. Bìoresursi ì prirodokoristuvannâ [Biological Resources and Nature Management], 11 (1-2), 14–25. https://doi.org/10.31548/ bio2019.01.002 (in Ukrainian) Savosko, V. N., 2009. Lokalnoe fonovoe soderzhanie tyazhelykh metallov v pochvakh Krivorozhskogo zhelezorudnogo regiona [The heavy metals’local background content in soils at Kryvyi Rih iron-ore region]. Gruntoznavstvo [Soil Science], 10 (3-4), 64-73. (in Russian) Savosko, V. N., 2016. Tyazhelyie metallyi v pochvah Krivbassa [Heavy Metals in Soils at Kryvbas]. Dionat. (in Russian) Savosko, V., Lykholat, Yu., Domshyna, K., & Lykholat, T., 2018. Ekolohichna ta heolohichna zumovlenist poshyrennia derev i chaharnykiv na devastovanykh zemliakh Kryvorizhzhia [Ecological and geological determination of trees and shrubs’ dispersal on the devastated lands at Kryvorizhya]. Journal of Geology, Geography and Geoecology, 27 (1), 116-130. https://doi. org/10.15421/111837 (in Ukrainian) Shcherbyna, R. O., Danilchenko, D. M., Parchenko, V. V., Panasenko, O. I., Knysh, E. H., Khromykh, N. O., & Lykholat, Y. V. (2017). Studying Of 2-((5-R-4- R1-4H-1,2,4-Triazole-3-Yl)Thio)Acetic Acid Salts Influence On Growth And Progress Of Blackberries (KIOWA Variety) Propagules. Research Journal of Pharmaceutical, Biological and Chemical Science, 8, 975-979. Shvaiko, V., & Manyuk, V., 2017. The Ecological Network of the subregional level of Dnipropetrovsk region (Pokrovsky and Mezhyvsky districts). Journal of Geology, Geography and Geoecology, 25 (1), 119-130. https://doi.org/https://doi. org/10.15421/111713 Skousen, J., & Zipper, C. E., 2014. Post-mining policies and practices in the Eastern USA coal region. International journal of coal science & technology, 1 (2), 135–151. https://doi.org/10.1007/s40789- 014-0021-6 Sparks, D. L., 2003. Environmental soil chemistry. Elsevier Science. Sposito, G., 2008. The Chemistry of Soils. Oxford University Press. Stehman, C. F., Willey, J. D., Avery, G. B., Manock, J. J., & Skrabal, S. A., 1999. Chemical Analysis of Soils: an Environmental Chemistry Laboratory for Undergraduate Science Majors. Journal of Chemical Education, 76 (12), 1693−1694. https://doi. org/10.1021/ed076p1693 Tsvetkova, N. M., Pakhomov, O. Y., Serdyuk, S. M., & Yakyba, M. S., 2016. Biologichne riznomanittja Ukrajiny. Dnipropetrovs’ka oblast’. Grunty. Metaly u gruntah [Bіological diversity of Ukraine. The Dnipropetrovsk region. Soils. Metalls in the soils]. Lira. (in Ukrainian) Tykhonenko, D. H., Dehtiarov, V. V., Krokhin, S. V., Velychko, L. L., Novosad, K. B., Balaiev, A. D., Kravchenko, Yu. S., Tonkha, O. L., & Veremeienko, S. I., 2009. Praktykum z gruntoznavstva [Workshop on soil science]. Maidan. (in Ukraine) Wong, M. H., 2003. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere, 50 (6), 775–780. https://doi. org/10.1016/S0045-6535(02)00232-1 Yakun, S., Xingmin, M., Kairong, L., Hongbo, S., 2016. Soil characterization and differential patterns of heavy metal accumulation in woody plants grown in coal gangue wastelands in Shaanxi, China. Environmental Science and Pollution Research, 23, 13489–13497. https://doi.org/10.1007/s11356- 016-6432-8 Zipper, C. E., Burger, J., Skousen, J. G., Angel, P. N., Barton, C. D., Davis, V., & Franklin, J., 2011. Restoring forests and associated ecosystem services on Appalachian coal surface mines. Environmental Management, 47, 751–765. https://doi. org/10.1007/s00267-011-9670-z
URI (Уніфікований ідентифікатор ресурсу): http://elibrary.kdpu.edu.ua/xmlui/handle/123456789/4286
https://doi.org/10.31812/123456789/4286
Розташовується у зібраннях:Кафедра ботаніки та екології

Файли цього матеріалу:
Файл Опис РозмірФормат 
2021 Savosko et al The total content of MN and HM in the soil on devastated lands at Kryvyi .pdf2.07 MBAdobe PDFПереглянути/Відкрити


Усі матеріали в архіві електронних ресурсів захищені авторським правом, всі права збережені.