dc.description |
[1] O. Pavlenko, D. Velykodnyi, O. Lavrentieva, and S. Filatov, “The Procedures of Logistic Transport Systems Simulation into the Petri Nets Environment,” CEUR Workshop Proceedings, vol. 2732, pp. 854–868, 2020.
[2] V. Aulin, A. Hrynkiv, O. Lyashuk, Y. Vovk, S. Lysenko, D. Holub, T. Zamota, A. Pankov, M. Sokol, V. Ratynskyi, and O. Lavrentieva, “Increasing the Functioning Efficiency of the Working Warehouse of the “UVK Ukraine” Company Transport and Logistics Center,” Communications - Scientific Letters of the University of Zilina, vol. 22, no. 2, pp. 3–14, 2020.
[3] S. O. Semerikov, T. A. Vakaliuk, I. S. Mintii, and S. O. Didkivska, “Challenges facing distance learning during martial law: results of a survey of Ukrainian students,” Educational Technology Quarterly, Oct. 2023. [Online]. Available: https://doi.org/10.55056/etq.637
[4] A. Burduk and K. Musiał, “Optimization of chosen transport task by using generic algorithms,” in Computer Information Systems and Industrial Management, K. Saeed and W. Homenda, Eds. Cham: Springer International Publishing, 2016, pp. 197–205.
[5] V. Prifti, I. Dervishi, K. Dhoska, I. Markja, and A. Pramono, “Minimization of transport costs in an industrial company through linear programming,” IOP Conference Series: Materials Science and Engineering, vol. 909, no. 1, p. 012040, dec 2020.
[6] P. C. Pop, C. Sabo, B. Biesinge, B. Hu, and G. R. Raidl, “Solving the two-stage fixed-charge transportation problem with a hybrid genetic algorithm,” Carpathian Journal of Mathematics, vol. 33, no. 3, pp. 364–370, 2017.
[7] O. Chyzhmotria, O. Chyzhmotria, and T. A. Vakaliuk, “Algorithm of Analysis and Conversion of Input Data of a Two-factor Multivariative Transport Problem with Weight Coefficients,” in Proceedings of The Fourth International Workshop on Computer Modeling and Intelligent Systems (CMIS-2021), Zaporizhzhia, Ukraine, April 27, 2021, ser. CEUR Workshop Proceedings, S. Subbotin, Ed. CEUR-WS.org, 2021, vol. 2864, pp. 455–464. [Online]. Available: https://ceur-ws.org/Vol-2864/paper40.pdf
[8] P. Pandian and G. Natarajan, “Solving Two Stage Transportation Problems,” in Control, Computation and Information Systems, P. Balasubramaniam, Ed. Berlin, Heidelberg: Springer, 2011, pp. 159–165.
[9] E. Garajová and M. Rada, “Interval transportation problem: feasibility, optimality and the worst optimal value,” Central European Journal of Operations Research, vol. 31, no. 3, pp. 769–790, Sep 2023.
[10] O. Cosma, P. C. Pop, and C. Sabo, “An Efficient Hybrid Genetic Algorithm for Solving a Particular Two-Stage Fixed-Charge Transportation Problem,” in Hybrid Artificial Intelligent Systems, H. Pérez Garcı́a, L. Sánchez González, M. Castejón Limas, H. Quintián Pardo, and E. Corchado Rodrı́guez, Eds. Cham: Springer, 2019, pp. 157–167.
[11] Y. Deng, Y. Zheng, and J. Li, “Route optimization model in collaborative logistics network for mixed transportation problem considered cost discount based on GATS,” Journal of Ambient Intelligence and Humanized Computing, vol. 10, no. 1, pp. 409–416, Jan 2019.
[12] M. R. Islam, M. R. Mahmud, and R. M. Pritom, “Transportation scheduling optimization by a collaborative strategy in supply chain management with TPL using chemical reaction optimization,” Neural Computing and Applications, vol. 32, no. 8, pp. 3649–3674, Apr 2020.
[13] S. Gupta, H. Garg, and S. Chaudhary, “Parameter estimation and optimization of multi-objective capacitated stochastic transportation problem for gamma distribution,” Complex & Intelligent Systems, vol. 6, no. 3, pp. 651–667, Oct 2020. [Online]. Available: https://doi.org/10.1007/s40747-020-00156-1
[14] P. I. Stetsiuk, O. P. Bysaha, and S. S. Tregubenko, “Two-stage transportation problem with constraint on the number of intermediate locations,” Computer mathematics, vol. 2, pp. 119–128, 2018 |
uk |