dc.description |
Zebende, G. (2011). DCCA cross-correlation coefficient:
Quantifying level of cross-correlation. Physica A:
Statistical Mechanics and Its Applications, 390(4),
614–618. https://doi.org/10.1016/j.physa.2010.10.022
Peng, C. K., Buldyrev, S. V., Havlin, S., Simons, M.,
Stanley, H. E., & Goldberger, A. L. (1994). Mosaic
organization of DNA nucleotides. Physical Review E,
49(2),
1685–1689.
https://doi.org/10.1103/physreve.49.1685
Zhou, W. X. (2008). Multifractal detrended cross-correlation analysis for two nonstationary signals.
Physical
Review
E,
77(6).
https://doi.org/10.1103/physreve.77.066211
Ito, M. I., & Ohnishi, T. (2020). Evaluation of the
Heterogeneous Spatial Distribution of Population and
Stores/Facilities by Multifractal Analysis. Frontiers in
Physics, 8. https://doi.org/10.3389/fphy.2020.00291
Zhang, X., Liu, H., Zhao, Y., & Zhang, X. (2019).
Multifractal detrended fluctuation analysis on air traffic
flow time series: A single airport case. Physica A:
Statistical Mechanics and Its Applications, 531,
121790. https://doi.org/10.1016/j.physa.2019.121790
Mandelbrot, B. B. (2021). The Fractal Geometry of Nature.
Echo Point Books & Media, LLC.
Aloui, C., & Mabrouk, S. (2010). Value-at-risk estimations
of energy commodities via long-memory, asymmetry
and fat-tailed GARCH models. Energy Policy, 38(5),
2326–2339.
https://doi.org/10.1016/j.enpol.2009.12.020
Herrera, R., Rodriguez, A., & Pino, G. (2017). Modeling
and forecasting extreme commodity prices: A Markov-Switching based extreme value model. Energy
Economics,
63,
129–143.
https://doi.org/10.1016/j.eneco.2017.01.012
Mandelbrot, B. (1967). The Variation of Some Other
Speculative Prices. The Journal of Business, 40(4), 393.
https://doi.org/10.1086/295006
Hurst, H. E. (1951). Long-Term Storage Capacity of
Reservoirs. Transactions of the American Society of
Civil
Engineers,
116(1),
770–799.
https://doi.org/10.1061/taceat.0006518
Lo, A. W. (1991). Long-Term Memory in Stock Market
Prices.
Econometrica,
59(5),
1279.
https://doi.org/10.2307/2938368
Kantelhardt, J. W., Zschiegner, S. A., Koscielny-Bunde, E.,
Havlin, S., Bunde, A., & Stanley, H. (2002).
Multifractal detrended fluctuation analysis of
nonstationary time series. Physica A: Statistical
Mechanics and Its Applications, 316(1–4), 87–114.
https://doi.org/10.1016/s0378-4371(02)01383-3
Podobnik, B., & Stanley, H. E. (2008). Detrended Cross-Correlation Analysis: A New Method for Analyzing
Two Nonstationary Time Series. Physical Review
Letters,
100(8).
https://doi.org/10.1103/physrevlett.100.084102
Bielinskyi, A. O., Khvostina, I., Mamanazarov, A.,
Matviychuk, A., Semerikov, S., Serdyuk, O.,
Solovieva, V., & Soloviev, V. N. (2021b). Predictors of
oil shocks. Econophysical approach in environmental
science. IOP Conference Series: Earth and
Environmental
Science,
628(1),
012019.
https://doi.org/10.1088/1755-1315/628/1/012019
Bielinskyi, A., Semerikov, S., Serdiuk, O., Solovieva, V.,
Soloviev, V., & Pichl, L. (2020). Econophysics of
sustainability indices. In A. E. Kiv (Ed.), Proceedings
of the Selected Papers of the Special Edition of
International Conference on Monitoring, Modeling &
Management of Emergent Economy (M3E2-MLPEED
2020) (pp. 372–392). CEUR-WS.org.
Soloviev, V. N., & Belinskiy, A. O. (2019) Complex
Systems Theory and Crashes of Cryptocurrency
Market. In: Ermolayev V., Suárez-Figueroa M.,
Yakovyna V., Mayr H., Nikitchenko M., Spivakovsky
A. (eds) Information and Communication Technologies
in Education, Research, and Industrial Applications.
ICTERI 2018. Communications in Computer and
Information Science, vol 1007. Springer, Cham.
https://doi.org/10.1007/978-3-030-13929-2_14
Hoayek, A., Hamie, H., & Auer, H. (2020). Modeling the
Price Stability and Predictability of Post Liberalized
Gas Markets Using the Theory of Information.
Energies,
13(11),
3012.
https://doi.org/10.3390/en13113012
Joo, K., Suh, J. H., Lee, D., & Ahn, K. (2020). Impact of
the global financial crisis on the crude oil market.
Energy
Strategy
Reviews,
30,
100516.
https://doi.org/10.1016/j.esr.2020.100516
Lautier, D. H., Raynaud, F., & Robe, M. A. (2019). Shock
Propagation Across the Futures Term Structure:
Evidence from Crude Oil Prices. The Energy Journal,
40(3). https://doi.org/10.5547/01956574.40.3.dlau
Hu, Y., Chen, Y., Tang, S., Feng, L., & Huang, C. (2021).
An Explanation of Energy Return on Investment From
an Entropy Perspective. Frontiers in Energy Research,
9. https://doi.org/10.3389/fenrg.2021.633528
Engelen, S., Norouzzadeh, P., Dullaert, W., & Rahmani, B.
(2011). Multifractal features of spot rates in the Liquid
Petroleum Gas shipping market. Energy Economics,
33(1),
88–98.
https://doi.org/10.1016/j.eneco.2010.05.009
Garnier, J., & Solna, K. (2019). Emergence of turbulent
epochs in oil prices. Chaos, Solitons & Fractals, 122,
281–292. https://doi.org/10.1016/j.chaos.2019.03.016
Ali, H., Aslam, F., & Ferreira, P. (2021). Modeling
Dynamic Multifractal Efficiency of US Electricity
Market.
Energies,
14(19),
6145.
https://doi.org/10.3390/en14196145
Fang, W., Gao, X., Huang, S., Jiang, M., & Liu, S. (2018).
Reconstructing time series into a complex network to
assess the evolution dynamics of the correlations
among energy prices. Open Physics, 16(1), 346–354.
https://doi.org/10.1515/phys-2018-0047
Xu, H., Wang, M., & Yang, W. (2020). Information
Linkage between Carbon and Energy Markets:
Multiplex Recurrence Network Approach. Complexity,
2020, 1–12. https://doi.org/10.1155/2020/5841609
Kassouri, Y., Bilgili, F., & Kuşkaya, S. (2022). A wavelet-based model of world oil shocks interaction with CO2
emissions in the US. Environmental Science & Policy,
127,
280–292.
https://doi.org/10.1016/j.envsci.2021.10.020
Hussain, S. I., Nur-Firyal, R., & Ruza, N. (2021). Linkage
transitions between oil and the stock markets of
countries with the highest COVID-19 cases. Journal of
Commodity
Markets,
100236.
https://doi.org/10.1016/j.jcomm.2021.100236
Wang, G. J., Xie, C., Chen, S., & Han, F. (2014). Cross-Correlations between Energy and Emissions Markets:
New Evidence from Fractal and Multifractal Analysis.
Mathematical Problems in Engineering, 2014, 1–13.
https://doi.org/10.1155/2014/197069
Zou, S., & Zhang, T. (2020). Cross-correlation analysis
between energy and carbon markets in China based on
multifractal theory. International Journal of Low-Carbon
Technologies,
15(3),
389–397.
https://doi.org/10.1093/ijlct/ctaa010
Quintino, D. D., Burnquist, H. L., & Ferreira, P. J. S.
(2021). Carbon Emissions and Brazilian Ethanol Prices:
Are They Correlated? An Econophysics Study.
Sustainability,
13(22),
12862.
https://doi.org/10.3390/su132212862
Natural Gas Futures Prices (NYMEX). (1997–2021).
[Dataset]. U.S. Energy Information Administration.
https://www.eia.gov/dnav/ng/ng_pri_fut_s1_d.htm
Spot Prices for Crude Oil and Petroleum Products. (1986–2021).
[Dataset].
U.S.
Energy
Information
Administration.
https://www.eia.gov/dnav/pet/pet_pri_spt_s1_d.htm
Bielinskyi, A. O., Serdyuk, O. A., Semerikov, S. O., &
Soloviev, V. N. (2021, December). Econophysics of
cryptocurrency crashes: a systematic review. In A. E.
Kiv, V. N. Soloviev, & S. O. Semerikov (Eds.),
Selected and Revised Papers of 9th International
Conference on Monitoring, Modeling & Management
of Emergent Economy (M3E2-MLPEED 2021) (pp.
31–133).
Bielinskyi, A. O., Hushko, S. V., Matviychuk, A. V.,
Serdyuk, O. A., Semerikov, S. O., & Soloviev, V. N.
(2021, December). Irreversibility of financial time
series: a case of crisis. In A. E. Kiv, V. N. Soloviev, &
S. O. Semerikov (Eds.), Selected and Revised Papers of
9th International Conference on Monitoring, Modeling
& Management of Emergent Economy (M3E2-MLPEED 2021) (pp. 134–150).
Mensi, W., Sensoy, A., Vo, X. V., & Kang, S. H. (2020).
Impact of COVID-19 outbreak on asymmetric
multifractality of gold and oil prices. Resources Policy,
69, 101829. |
uk |